OADA: An Online Data Augmentation Method for Raw Histopathology Images

被引:1
作者
Wu, Zhiyue [1 ]
Wang, Yijie [1 ]
Mi, Haibo [1 ]
Xi, Hongzuo [1 ]
Zhang, Wei [2 ]
Feng, Lanlan [2 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Sci & Technol Parallel & Distributed Proc Lab, Changsha, Peoples R China
[2] Airforce Mil Med Univ, Tangdu Hosp, Dept Pathol, Xian, Peoples R China
来源
NEURAL INFORMATION PROCESSING, ICONIP 2021, PT VI | 2022年 / 1517卷
基金
中国国家自然科学基金; 国家教育部科学基金资助;
关键词
Histopathology image; Online data augmentation; Deep learning;
D O I
10.1007/978-3-030-92310-5_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning-based automatic medical diagnosis is intensively studied in recent years. Abundant clinical raw records can be utilized, but we demonstrate that mixed and unknown magnification scales and staining conditions of raw histopathology images greatly hinder many successful deep models in this task. To address this problem, this paper proposes an Online Adaptive Data Augmentation method (OADA). In each training epoch, OADA adaptively selects base images and determines the personalized augmentation size of each image based on the current training status. The chosen images are augmented to update the training set. Extensive experiments show that OADA-empowered deep models obtain significant improvement compared to their bare versions, and OADA outperforms a suite of data augmentation baselines and state-of-the-art competitors.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 15 条
[1]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[2]   Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype Classification with Unannotated Histopathological Images [J].
Hashimoto, Noriaki ;
Fukushima, Daisuke ;
Koga, Ryoichi ;
Takagi, Yusuke ;
Ko, Kaho ;
Kohno, Kei ;
Nakaguro, Masato ;
Nakamura, Shigeo ;
Hontani, Hidekata ;
Takeuchi, Ichiro .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :3851-3860
[3]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[4]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[5]  
Inoue H, 2018, Arxiv, DOI [arXiv:1801.02929, 10.48550/arXiv.1801.02929]
[6]  
Li ST, 2018, Arxiv, DOI arXiv:1804.07757
[7]   Learning Data Augmentation with Online Bilevel Optimization for Image Classification [J].
Mounsaveng, Saypraseuth ;
Laradji, Issam ;
Ben Ayed, Ismail ;
Vazquez, David ;
Pedersoli, Marco .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, :1690-1699
[8]   A survey on Image Data Augmentation for Deep Learning [J].
Shorten, Connor ;
Khoshgoftaar, Taghi M. .
JOURNAL OF BIG DATA, 2019, 6 (01)
[9]  
Simonyan K, 2015, Arxiv, DOI [arXiv:1409.1556, DOI 10.48550/ARXIV.1409.1556]
[10]   A Dataset for Breast Cancer Histopathological Image Classification [J].
Spanhol, Fabio A. ;
Oliveira, Luiz S. ;
Petitjean, Caroline ;
Heutte, Laurent .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (07) :1455-1462