THE PLANAR TURÁN NUMBER OF {C6, C7}

被引:0
作者
Zheng, Yexin [1 ]
Xu, Changqing [1 ]
Lan, Yongxin [1 ]
机构
[1] Hebei Univ Technol, Sch Sci, Tianjin 300401, Peoples R China
基金
中国国家自然科学基金;
关键词
Turan number; planar graph; cycle;
D O I
10.7151/dmgt.2585
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a set of graphs. A graph is H-free if it does not contain any copy of H as a subgraph where H is an element of H. The planar Turan number of H, denoted by exp(n, H), is the maximum number of edges in an H-free planar graph on n vertices. The upper bounds of exp(n, {C-k,C- Ck+1}) are known when 3 < k < 5, and these bounds are tight. In this paper, we give the upper bound of exp(n, {C6, C7}) for all integers n >= 76, and this bound is sharp.
引用
收藏
页数:25
相关论文
共 20 条
[1]  
Bondy J.A., 2008, GRADUATE TEXTS MATH, V244, DOI DOI 10.1007/978-1-84628-970-5
[2]  
Cranston DW, 2022, ELECTRON J COMB, V29, DOI 10.37236/10774
[3]   Extremal C4-Free/C5-Free Planar Graphs [J].
Dowden, Chris .
JOURNAL OF GRAPH THEORY, 2016, 83 (03) :213-230
[4]  
Du L.L., 2023, Oper. Res. Trans.
[5]   Planar Turan Numbers on Short Cycles of Consecutive Lengths [J].
Du, Liangli ;
Wang, Bing ;
Zhai, Mingqing .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) :2395-2405
[6]   PLANAR TURAN NUMBER OF THE 6-CYCLE [J].
Ghosh, Debarun ;
Gyori, Ervin ;
Martin, Ryan R. ;
Paulos, Addisu ;
Xiao, Chuanqi .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) :2028-2050
[7]  
GyBri E., 2024, Graphs Combin., V40, P124, DOI [10.1007/s00373-024-02822-4, DOI 10.1007/S00373-024-02822-4]
[8]  
Gyori E, 2023, Arxiv, DOI arXiv:2307.06909
[9]  
Gyori E, 2022, Arxiv, DOI arXiv:2208.13477
[10]  
Keevash P., 2011, Surveys in Combinatorics