共 189 条
[61]
Penic R.J., Vlasic T., Huber R.G., Wan Y., Sikic M., RiNALMo: General-purpose RNA language models can generalize well on structure prediction tasks, (2024)
[62]
A. Rashid M., K. Paliwal K., Single sequence based feature engineering for convolutional neural networks towards RNA contact map prediction, 2023 IEEE Asia-Pacific Conference on Computer Science and Data Engineering, CSDE, pp. 1-6, (2023)
[63]
Chen W., Zhang X., Brooker J., Lin H., Zhang L., Chou K.-C., PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions, Bioinformatics, 31, 1, pp. 119-120, (2015)
[64]
Liu B., BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches, Brief. Bioinform., 20, 4, pp. 1280-1294, (2019)
[65]
Chen Z., Zhao P., Li C., Li F., Xiang D., Chen Y.-Z., Akutsu T., Daly R.J., Webb G.I., Zhao Q., Et al., iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization, Nucleic Acids Res., 49, 10, (2021)
[66]
Wang Y., Chen Z., Pan Z., Huang S., Liu J., Xia W., Zhang H., Zheng M., Li H., Hou T., Et al., RNAincoder: a deep learning-based encoder for RNA and RNA-associated interaction, Nucleic Acids Res., 51, W1, pp. W509-W519, (2023)
[67]
Liu B., Liu F., Wang X., Chen J., Fang L., Chou K.-C., Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences, Nucleic Acids Res., 43, W1, pp. W65-W71, (2015)
[68]
Liu B., Liu F., Fang L., Wang X., Chou K.-C., repRNA: a web server for generating various feature vectors of RNA sequences, Mol. Genet. Genom., 291, pp. 473-481, (2016)
[69]
Muhammod R., Ahmed S., Md Farid D., Shatabda S., Sharma A., Dehzangi A., PyFeat: a Python-based effective feature generation tool for DNA, RNA and protein sequences, Bioinformatics, 35, 19, pp. 3831-3833, (2019)
[70]
Chen Z., Zhao P., Li F., Marquez-Lago T.T., Leier A., Revote J., Zhu Y., Powell D.R., Akutsu T., Webb G.I., Et al., Ilearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data, Brief. Bioinform., 21, 3, pp. 1047-1057, (2020)