共 189 条
[51]
Ding J., Regev A., Deep generative model embedding of single-cell RNA-seq profiles on hyperspheres and hyperbolic spaces, Nat. Commun., 12, 1, (2021)
[52]
Bonizzoni P., Costantini M., De Felice C., Petescia A., Pirola Y., Previtali M., Rizzi R., Stoye J., Zaccagnino R., Zizza R., Numeric Lyndon-based feature embedding of sequencing reads for machine learning approaches, Inf. Sci., 607, pp. 458-476, (2022)
[53]
Hwang H., Jeon H., Yeo N., Baek D., Big data and deep learning for RNA biology, Exp. Mol. Med., pp. 1-29, (2024)
[54]
Woloszynek S., Zhao Z., Chen J., Rosen G.L., 16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses, PLoS Comput. Biol., 15, 2, (2019)
[55]
Mikolov T., Chen K., Corrado G., Dean J., Efficient estimation of word representations in vector space, (2013)
[56]
Asgari E., Mofrad M.R., Continuous distributed representation of biological sequences for deep proteomics and genomics, PLoS One, 10, 11, (2015)
[57]
Akiyama M., Sakakibara Y., Informative RNA base embedding for RNA structural alignment and clustering by deep representation learning, NAR: Genom. Bioinf., 4, 1, (2022)
[58]
Chiu B., Crichton G., Korhonen A., Pyysalo S., How to train good word embeddings for biomedical NLP, Proceedings of the 15th Workshop on Biomedical Natural Language Processing, pp. 166-174, (2016)
[59]
Arowolo M.O., Adebiyi M.O., Aremu C., Adebiyi A.A., A survey of dimension reduction and classification methods for RNA-Seq data on malaria vector, J. Big Data, 8, pp. 1-17, (2021)
[60]
Pudjihartono N., Fadason T., Kempa-Liehr A.W., O'Sullivan J.M., A review of feature selection methods for machine learning-based disease risk prediction, Front. Bioinformat., 2, (2022)