Characterization and Performance of Graphite-Lithium Titanium Oxide Composites Used as Anodes in Lithium-Ion Batteries

被引:1
作者
Zare, Khosrow F. [1 ]
Eslami, Abdoulmajid [1 ]
Bahrami, Abbas [1 ]
机构
[1] Isfahan Univ Technol, Dept Mat Engn, Esfahan 8415683111, Iran
关键词
Graphite composite; Lithium-ion battery; Lithium titanium oxide; Solid-state synthesis; Lithium diffusion coefficient; SOLID-STATE SYNTHESIS; PARTICLE-SIZE; DIFFUSION-COEFFICIENT; LI4TI5O12; MORPHOLOGY; TITANATE; NITROGEN;
D O I
10.1007/s13369-025-10378-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium titanium oxide used as the anode for lithium-ion batteries has some challenges such as its high electrical resistance and low lithium diffusion coefficient. To this end, graphite-lithium titanium oxide composites were prepared and the effect of synthesis parameters on half-cell and full-cell performance with NMC532 cathode was investigated. The best synthesis parameters included 5 h of milling, a heat treatment temperature of 850 degrees C, and graphite contents of 70 or 90 W/W%, resulting in full-cell capacity of 124.73 mA h g-1 and initial Coulombic efficiency (ICE) of 97.63 for 90% graphite content and the capacity of 116.14 mA h g-1 and ICE of 95.62 for 70% graphite content. The hall-cell capacity also improved to 311.23 Ma h g-1 and 290.51 mA h g-1 for 90% and 70% graphite content, respectively. The composites also improved the lithium diffusion coefficient, achieving a diffusion coefficient of 1.356x10-11cms-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.356\times {10}<^>{-11}\text{cm}\, {\text{s}}<^>{-1}$$\end{document} for the composite anode compared to 2.968x10-14cms-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.968\times {10}<^>{-14}\text{cm}\, {\text{s}}<^>{-1}$$\end{document} for LTO anode in full-cell configuration. The results of microstructural studies after charge and discharge cycles showed that composites containing LTO were successful in preventing the formation of lithium dendrite structures often observed on graphite anodes. The synthesis parameters were optimized for the first time with an emphasis on full-cell performance when paired with an NMC532 cathode. The proposed mechanism for this improved performance was ascribed to the formation of an LTO layer over the graphite anode, providing the advantages associated with LTO while minimizing the disadvantages by minimizing the length of lithium diffusion pathways in the LTO phase.
引用
收藏
页数:21
相关论文
共 53 条
[1]   Biowaste-derived graphitic carbon interfaced TiO2 as anode for lithium-ion battery [J].
Ahmed, Abu Talha Aqueel ;
Soni, Ritesh ;
Ansari, Abu Saad ;
Lee, Chang Young ;
Kim, Hyun-Seok ;
Im, Hyunsik ;
Bathula, Chinna .
SURFACES AND INTERFACES, 2022, 35
[2]  
Antony J., 2001, WORK STUDY, V50, P141, DOI DOI 10.1108/00438020110391873
[3]   Optimization Strategies of Hybrid Lithium Titanate Oxide/Carbon Anodes for Lithium-Ion Batteries [J].
Apostolopoulou, Maria ;
Vernardou, Dimitra ;
Passerini, Stefano .
NANOMATERIALS, 2024, 14 (22)
[4]   Dual-Modified Li4Ti5O12 Anode by Copper Decoration and Carbon Coating to Boost Lithium Storage [J].
Bai, Xue ;
Li, Tao ;
Bai, Yu-Jun .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (46) :17177-17184
[5]   Extensive aging analysis of high-power lithium titanate oxide batteries: Impact of the passive electrode effect [J].
Bank, Thomas ;
Feldmann, Jan ;
Klamor, Sebastian ;
Bihn, Stephan ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2020, 473
[6]   Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems (vol 9, 1803170, 2019) [J].
Betz, Johannes ;
Bieker, Georg ;
Meister, Paul ;
Placke, Tobias ;
Winter, Martin ;
Schmuch, Richard .
ADVANCED ENERGY MATERIALS, 2019, 9 (22)
[7]   Cross-linked K2Ti4O9 nanoribbon arrays with superior rate capability and cyclability for lithium-ion batteries [J].
Cao, Minglei ;
Chen, Wei ;
Ma, Yanan ;
Huang, Haiming ;
Luo, Shijun ;
Zhang, Chuankun .
MATERIALS LETTERS, 2020, 279
[8]   Lithium titanate as anode material for lithium ion batteries: Synthesis, post-treatment and its electrochemical response [J].
Chauque, S. ;
Oliva, F. Y. ;
Visintin, A. ;
Barraco, D. ;
Leiva, E. P. M. ;
Camara, O. R. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 799 :142-155
[9]   Lithium insertion/extraction mechanism in Mg2Sn anode for lithium-ion batteries [J].
Chen, Xize ;
Wei, Shanghai ;
Wang, Jinzhi ;
Tong, Fanglei ;
Sohnel, Tilo ;
Waterhouse, Geoff I. N. ;
Zhang, Wen ;
Kennedy, John ;
Taylor, Mark P. .
INTERMETALLICS, 2024, 169
[10]   Electrical Equivalent Circuit Model and RC Parameter Estimation for Vanadium Redox Flow Battery by Considering Self-discharge [J].
Das, Jusmita ;
Dasgupta, Rajdeep ;
Mahanta, Vivekananda ;
Ramanujam, Kothandaraman .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (12) :16033-16044