Almost reducibility and growth of Sobolev norms of 1-d quantum harmonic oscillator with polynomial time quasi-periodic perturbations

被引:0
作者
Mi, Yue [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Quantum harmonic oscillator; Almost reducible; Growth of Sobolev norms; Metaplectic representation; UNBOUNDED PERTURBATIONS; SCHRODINGER-EQUATIONS; SPECTRUM; KAM; HAMILTONIANS;
D O I
10.1016/j.jmaa.2025.129751
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For 1-d quantum harmonic oscillator perturbed by a time quasi-periodic non-homogeneous quadratic polynomials in (x, -i partial derivative x), we prove its almost reducibility. Based on this theory, we have shown the growth of Sobolev norms of solutions. In fact it will have an o(ts)-upper bound for the Hs-norm when the equation is non-reducible. The results are proved via the utilization of Schr & ouml;dinger and Metaplectic representation. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:21
相关论文
共 50 条
[1]  
Avila A, 2010, J EUR MATH SOC, V12, P93
[2]  
Avila A., Almost reducibility of pseudo-rotations of the disk
[3]   Global theory of one-frequency Schrodinger operators [J].
Avila, Artur .
ACTA MATHEMATICA, 2015, 215 (01) :1-54
[4]   Reducibility of 1-d Schrodinger equation with unbounded time quasiperiodic perturbations. III [J].
Bambusi, D. ;
Montalto, R. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (12)
[5]   Reducibility of 1-d Schrodinger Equation with Time Quasiperiodic Unbounded Perturbations, II [J].
Bambusi, D. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (01) :353-378
[6]   Time quasi-periodic unbounded perturbations of Schrodinger operators and KAM methods [J].
Bambusi, D ;
Graffi, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (02) :465-480
[7]   Growth of Sobolev norms for unbounded perturbations of the Schrodinger equation on flat tori [J].
Bambusi, Dario ;
Langella, Beatrice ;
Montalto, Riccardo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 318 :344-358
[8]   Growth of Sobolev norms for abstract linear Schrodinger equations [J].
Bambusi, Dario ;
Grebert, Benoit ;
Maspero, Alberto ;
Robert, Didier .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (02) :557-583
[9]  
Bambusi D, 2019, ANN HENRI POINCARE, V20, P1893, DOI 10.1007/s00023-019-00795-2
[10]   REDUCIBILITY OF THE QUANTUM HARMONIC OSCILLATOR IN d-DIMENSIONS WITH POLYNOMIAL TIME-DEPENDENT PERTURBATION [J].
Bambusi, Dario ;
Grebert, Benoit ;
Maspero, Alberto ;
Robert, Didier .
ANALYSIS & PDE, 2018, 11 (03) :775-799