Local Discovery by Partitioning: Polynomial-Time Causal Discovery Around Exposure-Outcome Pairs

被引:0
作者
Maasch, Jacqueline [1 ]
Pan, Weishen [2 ]
Gupta, Shantanu [3 ]
Kuleshov, Volodymyr [1 ]
Gan, Kyra [4 ]
Wang, Fei [2 ]
机构
[1] Cornell Tech, Dept Comp Sci, New York, NY 10044 USA
[2] Weill Cornell Med, Dept Populat Hlth Sci, New York, NY USA
[3] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
[4] Cornell Tech, Dept Operat Res & Informat Engn, New York, NY USA
来源
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE | 2024年 / 244卷
关键词
DIRECTED ACYCLIC GRAPHS; VARIABLE SELECTION; INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Causal discovery is crucial for causal inference in observational studies, as it can enable the identification of valid adjustment sets (VAS) for unbiased effect estimation. However, global causal discovery is notoriously hard in the nonparametric setting, with exponential time and sample complexity in the worst case. To address this, we propose local discovery by partitioning (LDP): a local causal discovery method that is tailored for downstream inference tasks without requiring parametric and pretreatment assumptions. LDP is a constraint-based procedure that returns a VAS for an exposure-outcome pair under latent confounding, given sufficient conditions. The total number of independence tests performed is worst-case quadratic with respect to the cardinality of the variable set. Asymptotic theoretical guarantees are numerically validated on synthetic graphs. Adjustment sets from LDP yield less biased and more precise average treatment effect estimates than baseline discovery algorithms, with LDP outperforming on confounder recall, runtime, and test count for VAS discovery. Notably, LDP ran at least 1300x faster than baselines on a benchmark.
引用
收藏
页码:2350 / 2382
页数:33
相关论文
共 62 条
[1]  
Aliferis CF, 2010, J MACH LEARN RES, V11, P171
[2]   GPUCSL: GPU-Based Library for Causal Structure Learning [J].
Braun, Tom ;
Hurdelhey, Ben ;
Meier, Dominik ;
Tsayun, Petr .
2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, :1236-1239
[3]   Variable selection for propensity score models [J].
Brookhart, M. Alan ;
Schneeweiss, Sebastian ;
Rothman, Kenneth J. ;
Glynn, Robert J. ;
Avorn, Jerry ;
Sturmer, Til .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2006, 163 (12) :1149-1156
[4]  
Cai HR, 2023, Arxiv, DOI arXiv:2301.12389
[5]   Local Search for Efficient Causal Effect Estimation [J].
Cheng, Debo ;
Li, Jiuyong ;
Liu, Lin ;
Zhang, Jiji ;
Liu, Jixue ;
Le, Thuc Duy .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) :8823-8837
[6]   Toward Unique and Unbiased Causal Effect Estimation From Data With Hidden Variables [J].
Cheng, Debo ;
Li, Jiuyong ;
Liu, Lin ;
Yu, Kui ;
Thuc Duy Le ;
Liu, Jixue .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) :6108-6120
[7]   LEARNING HIGH-DIMENSIONAL DIRECTED ACYCLIC GRAPHS WITH LATENT AND SELECTION VARIABLES [J].
Colombo, Diego ;
Maathuis, Marloes H. ;
Kalisch, Markus ;
Richardson, Thomas S. .
ANNALS OF STATISTICS, 2012, 40 (01) :294-321
[8]  
Colombo Diego, Journal of Machine Learning Research, V15, P3921
[9]  
Dai HY, 2024, PR MACH LEARN RES, V238
[10]   Covariate selection for the nonparametric estimation of an average treatment effect [J].
De Luna, Xavier ;
Waernbaum, Ingeborg ;
Richardson, Thomas S. .
BIOMETRIKA, 2011, 98 (04) :861-875