WATER LOSS TO THE ATMOSPHERE OVER THE TIBETAN PLATEAU BASED ON REMOTE SENSING EVAPOTRANSPIRATION DATASETS

被引:0
作者
Zheng, Chaolei [1 ]
Jia, Li [1 ]
Hu, Guangcheng [1 ]
Lu, Jing [1 ]
Menenti, Massimo [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100049, Peoples R China
[2] Delft Univ Technol, Fac Civil Engn & Geosci, Delft, Netherlands
来源
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024 | 2024年
基金
中国国家自然科学基金;
关键词
water loss; evapotranspiration; Tibetan Plateau; ETMonitor; Earth observation;
D O I
10.1109/IGARSS53475.2024.10640767
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In the Tibetan Plateau (TP) region, the foreseeable increase in air temperature may have profound and complex effects on the local hydrological cycle, and is likely to increase water loss from the land surface to the atmosphere through evapotranspiration (ET). Quantifying ET and its regulatory mechanisms are major challenges for understanding the water cycle and land-atmosphere interactions in the TP region. We evaluated the performance of several Earth observation-based ET datasets in the TP region, and explored the spatiotemporal variation of ET in the same region. The accuracy of different global ET datasets was evaluated, and ETMonitor and PML-V2 provide the best accuracy with overall high correlation, low bias, and low root mean square error. ETMonitor ET is also the only product with both high spatial (similar to 1 km) and temporal (daily) resolution. ETMonitor ET may reflect the effect of mountain topography on ET better than other global products, i.e., ET values are higher in the humid valleys with denser vegetation cover and higher soil moisture, and ET values are lower on the mountain slopes at higher elevations with less vegetation cover and colder climate. Other ET products failed to capture the spatial patterns of ET in the mountainous regions, and this suggests that the spatial resolution is not the only dominant factor leading to the poorer performance of these ET products in the mountain regions of the TP. The results show that multi-year average ET is 339 mm/yr in the TP region during 2000-2021, which accounts for about 51% of the total precipitation in the TP region. From 2000 to 2021, ET over the Tibetan Plateau shows an overall increasing trend with large spatial variability.
引用
收藏
页码:854 / 857
页数:4
相关论文
共 13 条
[1]   Synthesis of global actual evapotranspiration from 1982 to 2019 [J].
Elnashar, Abdelrazek ;
Wang, Linjiang ;
Wu, Bingfang ;
Zhu, Weiwei ;
Zeng, Hongwei .
EARTH SYSTEM SCIENCE DATA, 2021, 13 (02) :447-480
[2]   The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China [J].
Liu, Shaomin ;
Li, Xin ;
Xu, Ziwei ;
Che, Tao ;
Xiao, Qing ;
Ma, Mingguo ;
Liu, Qinhuo ;
Jin, Rui ;
Guo, Jianwen ;
Wang, Liangxu ;
Wang, Weizhen ;
Qi, Yuan ;
Li, Hongyi ;
Xu, Tongren ;
Ran, Youhua ;
Hu, Xiaoli ;
Shi, Shengjin ;
Zhu, Zhongli ;
Tan, Junlei ;
Zhang, Yang ;
Ren, Zhiguo .
VADOSE ZONE JOURNAL, 2018, 17 (01)
[3]   Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation [J].
Ma, Ning ;
Zhang, Yongqiang .
AGRICULTURAL AND FOREST METEOROLOGY, 2022, 317
[4]   A long-term (2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau [J].
Ma, Yaoming ;
Hu, Zeyong ;
Xie, Zhipeng ;
Ma, Weiqiang ;
Wang, Binbin ;
Chen, Xuelong ;
Li, Maoshan ;
Zhong, Lei ;
Sun, Fanglin ;
Gu, Lianglei ;
Han, Cunbo ;
Zhang, Lang ;
Liu, Xin ;
Ding, Zhangwei ;
Sun, Genhou ;
Wang, Shujin ;
Wang, Yongjie ;
Wang, Zhongyan .
EARTH SYSTEM SCIENCE DATA, 2020, 12 (04) :2937-2957
[5]  
MENENTI M, 2021, MULTI SOURCE HYDROLO, V13, DOI DOI 10.3390/RS13245122
[6]   Improvements to a MODIS global terrestrial evapotranspiration algorithm [J].
Mu, Qiaozhen ;
Zhao, Maosheng ;
Running, Steven W. .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (08) :1781-1800
[7]   The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data [J].
Pastorello, Gilberto ;
Trotta, Carlo ;
Canfora, Eleonora ;
Chu, Housen ;
Christianson, Danielle ;
Cheah, You-Wei ;
Poindexter, Cristina ;
Chen, Jiquan ;
Elbashandy, Abdelrahman ;
Humphrey, Marty ;
Isaac, Peter ;
Polidori, Diego ;
Ribeca, Alessio ;
van Ingen, Catharine ;
Zhang, Leiming ;
Amiro, Brian ;
Ammann, Christof ;
Arain, M. Altaf ;
Ardo, Jonas ;
Arkebauer, Timothy ;
Arndt, Stefan K. ;
Arriga, Nicola ;
Aubinet, Marc ;
Aurela, Mika ;
Baldocchi, Dennis ;
Barr, Alan ;
Beamesderfer, Eric ;
Marchesini, Luca Belelli ;
Bergeron, Onil ;
Beringer, Jason ;
Bernhofer, Christian ;
Berveiller, Daniel ;
Billesbach, Dave ;
Black, Thomas Andrew ;
Blanken, Peter D. ;
Bohrer, Gil ;
Boike, Julia ;
Bolstad, Paul V. ;
Bonal, Damien ;
Bonnefond, Jean-Marc ;
Bowling, David R. ;
Bracho, Rosvel ;
Brodeur, Jason ;
Bruemmer, Christian ;
Buchmann, Nina ;
Burban, Benoit ;
Burns, Sean P. ;
Buysse, Pauline ;
Cale, Peter ;
Cavagna, Mauro .
SCIENTIFIC DATA, 2020, 7 (01) :225
[8]   Operational Global Actual Evapotranspiration: Development, Evaluation, and Dissemination [J].
Senay, Gabriel B. ;
Kagone, Stefanie ;
Velpuri, Naga M. .
SENSORS, 2020, 20 (07)
[9]  
Yao Y., 2014, J GEOPHYS RES-ATMOS, V119
[10]  
Yuan L., 2021, J GEOPHYS RES-ATMOS, V126