Topological pathways to two-dimensional quantum turbulence

被引:0
作者
Panico, R. [1 ,2 ]
Ciliberto, G. [3 ]
Martone, G. I. [1 ,4 ]
Congy, T. [5 ]
Ballarini, D. [1 ]
Lanotte, A. S. [1 ,4 ]
Pavloff, N. [3 ]
机构
[1] CNR NANOTEC, Inst Nanotechnol, Via Monteroni, I-73100 Lecce, Italy
[2] Univ Bonn, Inst Fair Angew Phys, Wegelerstr 8, D-53115 Bonn, Germany
[3] Univ Paris Saclay, CNRS, LPTMS, F-91405 Orsay, France
[4] INFN, Sez Lecce, I-73100 Lecce, Italy
[5] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne NE1 8ST, England
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 02期
关键词
PHASE SADDLES; VORTICES; DYNAMICS;
D O I
10.1103/PhysRevResearch.7.L022063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a combined experimental and theoretical investigation of the formation and decay kinetics of vortices in two-dimensional, compressible quantum turbulence. We follow the temporal evolution of a quantum fluid of exciton polaritons, hybrid light-matter quasiparticles, and measure both phase and modulus of the order parameter in the turbulent regime. Fundamental topological conservation laws require that the formation and annihilation of vortices also involve critical points of the velocity field, namely nodes and saddles. Identifying the simplest mechanisms underlying these processes enables us to develop an effective kinetic model that closely aligns with the experimental observations, and shows that different processes are responsible for vortex number growth and decay. These findings underscore the crucial role played by topological constraints in shaping nonlinear, turbulent evolution of two-dimensional quantum fluids.
引用
收藏
页数:7
相关论文
共 52 条
[1]   VORTICITY AND PASSIVE-SCALAR DYNAMICS IN TWO-DIMENSIONAL TURBULENCE [J].
BABIANO, A ;
BASDEVANT, C ;
LEGRAS, B ;
SADOURNY, R .
JOURNAL OF FLUID MECHANICS, 1987, 183 :379-397
[2]   Decay of homogeneous two-dimensional quantum turbulence [J].
Baggaley, Andrew W. ;
Barenghi, Carlo F. .
PHYSICAL REVIEW A, 2018, 97 (03)
[3]   Turbulent dynamics in a two-dimensional paraxial fluid of light [J].
Baker-Rasooli, Myrann ;
Liu, Wei ;
Aladjidi, Tangui ;
Bramati, Alberto ;
Glorieux, Quentin .
PHYSICAL REVIEW A, 2023, 108 (06)
[4]   ON THE STATISTICAL PROPERTIES OF TWO-DIMENSIONAL DECAYING TURBULENCE [J].
BENZI, R ;
PATARNELLO, S ;
SANTANGELO, P .
EUROPHYSICS LETTERS, 1987, 3 (07) :811-818
[5]   Conformal invariance in two-dimensional turbulence [J].
Bernard, D ;
Boffetta, G ;
Celani, A ;
Falkovich, G .
NATURE PHYSICS, 2006, 2 (02) :124-128
[6]   Two-Dimensional Turbulence [J].
Boffetta, Guido ;
Ecke, Robert E. .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 44, 2012, 44 :427-451
[7]   THE DYNAMICS OF FREELY DECAYING TWO-DIMENSIONAL TURBULENCE [J].
BRACHET, ME ;
MENEGUZZI, M ;
POLITANO, H ;
SULEM, PL .
JOURNAL OF FLUID MECHANICS, 1988, 194 :333-349
[8]   Josephson vortices induced by phase twisting a polariton superfluid [J].
Caputo, Davide ;
Bobrovska, Nataliya ;
Ballarini, Dario ;
Matuszewski, Michal ;
De Giorgi, Milena ;
Dominici, Lorenzo ;
West, Kenneth ;
Pfeiffer, Loren N. ;
Gigli, Giuseppe ;
Sanvitto, Daniele .
NATURE PHOTONICS, 2019, 13 (07) :488-+
[9]   Topological Constraints on the Dynamics of Vortex Formation in a Two-Dimensional Quantum Fluid [J].
Congy, T. ;
Azam, P. ;
Kaiser, R. ;
Pavloff, N. .
PHYSICAL REVIEW LETTERS, 2024, 132 (03)
[10]   Transport in two-dimensional topological materials: recent developments in experiment and theory [J].
Culcer, Dimitrie ;
Cem Keser, Aydin ;
Li, Yongqing ;
Tkachov, Grigory .
2D MATERIALS, 2020, 7 (02)