Inequalities in Mild Cognitive Impairment Risk Among Chinese Middle-Aged and Older Adults: Insights from an Integrated Learning Model

被引:0
作者
Bi, Shengxian [1 ]
Guo, Dandan [2 ]
Tan, Huawei [1 ]
Chen, Yingchun [1 ]
Li, Gang [3 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Med Coll, Sch Med & Hlth Management, Wuhan 430030, Hubei, Peoples R China
[2] Hubei Univ Med, Sch Publ Hlth & Hlth Sci, Shiyan 442000, Hubei, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Publ Hlth, Sch Med, Shanghai 200025, Peoples R China
基金
中国国家自然科学基金;
关键词
mild cognitive impairment; inequality; integrated learning; CNN-BiLSTM-Attention; SHAP analysis; Mediation analysis; DEMENTIA; PROGRESSION; PREVALENCE; PEOPLE; METAANALYSIS; PREDICTION; FRAMEWORK; EDUCATION; HEALTH;
D O I
10.2147/RMHP.S519049
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective: This study aims to address inequalities in mild cognitive impairment (MCI) risk among Chinese middle-aged and older adults by developing an integrated learning framework to predict MCI risk and identify key contributing factors. Methods: Using CHARLS data of 4626 participants, we developed a convolutional neural network-bidirectional long short-term memory-attention (CNN-BiLSTM-Attention) model to capture the temporal and spatial features of MCI progression. SHAP (Shapley Additive Explanations) analysis quantified feature importance and enhanced interpretability, while mediation analysis explored causal pathways, particularly focusing on the role of education. Model performance was compared with eight other frameworks, including LSTM-based models, using Receiver Operating Characteristic (ROC) curves and classification metrics. Results: The CNN-BiLSTM-Attention model demonstrated relatively promising predictive performance (AUC: 0.7317), with moderately high sensitivity (0.6902) and a high negative predictive value (NPV) of 0.9414. Education emerged as the most critical predictor, followed by Instrumental Activities of Daily Living (IADL) and gender. Mediation analysis revealed that education influenced MCI risk indirectly through health insurance, social interaction, physical activity, and depression. Conclusion: We present an interpretable, data-driven framework for predicting MCI risk while uncovering key inequality factors, particularly the pivotal role of education. The model's robust performance and interpretability highlight its potential to inform public health strategies and interventions aimed at addressing inequalities in dementia risk.
引用
收藏
页码:1793 / 1808
页数:16
相关论文
共 77 条
[51]   Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects [J].
Moradi, Elaheh ;
Pepe, Antonietta ;
Gaser, Christian ;
Huttunen, Heikki ;
Tohka, Jussi .
NEUROIMAGE, 2015, 104 :398-412
[52]  
Muhammed Niyas K.P., 2023, Int. J. Intell. Netw., V4, P74, DOI DOI 10.1016/J.IJIN.2023.03.004
[53]   Family income, parental education and brain structure in children and adolescents [J].
Noble, Kimberly G. ;
Houston, Suzanne M. ;
Brito, Natalie H. ;
Bartsch, Hauke ;
Kan, Eric ;
Kuperman, Joshua M. ;
Akshoomoff, Natacha ;
Amaral, David G. ;
Bloss, Cinnamon S. ;
Libiger, Ondrej ;
Schork, Nicholas J. ;
Murray, Sarah S. ;
Casey, B. J. ;
Chang, Linda ;
Ernst, Thomas M. ;
Frazier, Jean A. ;
Gruen, Jeffrey R. ;
Kennedy, David N. ;
Van Zijl, Peter ;
Mostofsky, Stewart ;
Kaufmann, Walter E. ;
Kenet, Tal ;
Dale, Anders M. ;
Jernigan, Terry L. ;
Sowell, Elizabeth R. .
NATURE NEUROSCIENCE, 2015, 18 (05) :773-+
[54]   Predicting Progression from Normal to MCI and from MCI to AD Using Clinical Variables in the National Alzheimer's Coordinating Center Uniform Data Set Version 3: Application of Machine Learning Models and a Probability Calculator [J].
Pang, Y. ;
Kukull, W. ;
Sano, M. ;
Albin, R. L. ;
Shen, C. ;
Zhou, J. ;
Dodge, Hiroko H. .
JPAD-JOURNAL OF PREVENTION OF ALZHEIMERS DISEASE, 2023, 10 (02) :301-313
[55]   Mediation analysis methods used in observational research: a scoping review and recommendations [J].
Rijnhart, Judith J. M. ;
Lamp, Sophia J. ;
Valente, Matthew J. ;
MacKinnon, David P. ;
Twisk, Jos W. R. ;
Heymans, Martijn W. .
BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
[56]   A framework for mapping and comparing behavioural theories in models of social-ecological systems [J].
Schluter, Maja ;
Baeza, Andres ;
Dressler, Gunnar ;
Frank, Karin ;
Groeneveld, Juergen ;
Jager, Wander ;
Janssen, Marco A. ;
McAllister, Ryan R. J. ;
Mueller, Birgit ;
Orach, Kirill ;
Schwarz, Nina ;
Wijermans, Nanda .
ECOLOGICAL ECONOMICS, 2017, 131 :21-35
[57]   Sleep disturbances and dementia risk: A multicenter study [J].
Sindi, Shireen ;
Kareholt, Ingemar ;
Johansson, Lena ;
Skoog, Johan ;
Sjoberg, Linnea ;
Wang, Hui-Xin ;
Johansson, Boo ;
Fratiglioni, Laura ;
Soininen, Hilkka ;
Solomon, Alina ;
Skoog, Ingmar ;
Kivipelto, Miia .
ALZHEIMERS & DEMENTIA, 2018, 14 (10) :1235-1242
[58]   Pain and mild cognitive impairment among adults aged 50 years and above residing in low- and middle-income countries [J].
Smith, Lee ;
Sanchez, Guillermo Lopez F. ;
Shin, Jae Il ;
Soysal, Pinar ;
Pizzol, Damiano ;
Barnett, Yvonne ;
Kostev, Karel ;
Jacob, Louis ;
Veronese, Nicola ;
Butler, Laurie ;
Odell-Miller, Helen ;
Bloska, Jodie ;
Underwood, Benjamin R. ;
Koyanagi, Ai .
AGING CLINICAL AND EXPERIMENTAL RESEARCH, 2023, 35 (07) :1513-1520
[59]   Marriage and risk of dementia: systematic review and meta-analysis of observational studies [J].
Sommerlad, Andrew ;
Ruegger, Joshua ;
Singh-Manoux, Archana ;
Lewis, Glyn ;
Livingston, Gill .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2018, 89 (03) :231-238
[60]   Machine learning algorithms to predict mild cognitive impairment in older adults in China: A cross-sectional study [J].
Song, Yanliqing ;
Yuan, Quan ;
Liu, Haoqiang ;
Gu, KeNan ;
Liu, Yue .
JOURNAL OF AFFECTIVE DISORDERS, 2025, 368 :117-126