INEQUALITIES OF THE 3/8-SIMPSON TYPE FOR DIFFERENTIABLE FUNCTIONS VIA GENERALIZED FRACTIONAL OPERATORS

被引:0
作者
Bayraktar, B. [1 ]
Gomez, L. [2 ]
Napoles, J. E. [3 ]
机构
[1] Bursa Uludag Univ, Fac Educ, Gorukle Campus, TR-16059 Bursa, Turkiye
[2] UNNE ACENA, Av Libertad 5450, RA-3400 Corrientes, Argentina
[3] Argentina UTN FRRE, UNNE FaCENA, Av Libertad 5450,Corrientes 3400,French 414, RA-3500 Resistencia, Chaco, Argentina
来源
PROBLEMY ANALIZA-ISSUES OF ANALYSIS | 2025年 / 14卷 / 02期
关键词
convex function; (h; m)<acute accent>convex function; Simpson-type inequality; weighted integral operator; Holder inequality; Power mean inequality; Young inequality; Lipschitz function; SIMPSON-LIKE INEQUALITIES; INTEGRAL-INEQUALITIES; CONVEX-FUNCTIONS; S-CONVEX; DERIVATIVES;
D O I
10.15393/j3.art.2025.17330
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Simpson-type inequalities are an important tool in mathematical analysis, particularly in the study of integrals. In this paper, we present new generalized 3/8-Simpson-type inequalities for functions whose first derivative modulus is (h, m)-convex and satisfies the Lipschitz condition via weight integral operators. To obtain these results, we use a new integral identity established in our study. This research generalizes, extends, and complements the results in the literature.
引用
收藏
页码:25 / 52
页数:28
相关论文
共 35 条
[1]  
Akkurt A., 2016, NTMSCI, V4, P138, DOI DOI 10.20852/NTMSCI.2016217824
[2]  
Ali M. A., 2020, Fasciculi Mathematici, V64, P5, DOI [10.21008/j.0044-4413.2020.0007, DOI 10.21008/J.0044-4413.2020.0007]
[3]  
Alomari M, 2011, APPL MATH E-NOTES, V11, P110
[4]   Some New Estimates for Integral Inequalities and Their Applications [J].
Bayraktar, B. ;
Butt, S. I. ;
Napoles, J. E. ;
Rabossi, F. .
UKRAINIAN MATHEMATICAL JOURNAL, 2024, 76 (02) :169-191
[5]   Some Refinements of the Hermite-Hadamard Inequality with the Help of Weighted Integrals [J].
Bayraktar, B. ;
Napoles, J. E. ;
Rabossi, F. .
UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (06) :842-860
[6]  
Bayraktar B., 2020, Turkish J. Ineq., V4, P59
[7]  
Bayraktar B., 2022, Fractional Differential Calculus, V12, P235, DOI DOI 10.7153/FDC-2022-12-15
[8]  
Bayraktar Bahtiyar, 2023, Proyecciones (Antofagasta), V42, P1221, DOI 10.22199/issn.0717-6279-5610
[9]   Integral inequalities for mappings whose derivatives are (h, m, s)-convex modified of second type via Katugampola integrals [J].
Bayraktar, Bahtiyar ;
Valdas, June E. Naepoles .
ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2022, 49 (02) :371-383
[10]   Hermite-Hadamard-type inequalities for conformable integrals [J].
Bohner, Martin ;
Kashuri, Artion ;
Mohammed, Pshtiwan Othman ;
Napoles Valdes, Juan E. .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (03) :775-786