Geometric Nature of the Turánian of Modified Bessel Function of the First Kind

被引:0
作者
Sarkar, Samanway [1 ]
Prodanov, Dimiter [2 ]
Kumar, Anish [3 ]
Das, Sourav [1 ]
机构
[1] Natl Inst Technol Jamshedpur, Dept Math, Jamshedpur 831014, Jharkhand, India
[2] Bulgarian Acad Sci, Inst Informat & Commun Technol IICT, Lab Neurotechnol PAML LN, Sofia 1113, Bulgaria
[3] Indian Inst Technol Bhilai, Dept Math, Raipur 492015, India
关键词
analytic function; univalent function; starlike function; convex function; Bessel function; STARLIKENESS; CONVEXITY; BOUNDS; RADII;
D O I
10.3390/axioms13120874
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work explores the geometric properties of the Turanian of the modified Bessel function of the first kind (TMBF). Using the properties of the digamma function, we establish conditions under which the normalized TMBF satisfies starlikeness, convexity, k-starlikeness, k-uniform convexity, pre-starlikeness, lemniscate starlikeness, and convexity, and under which exponential starlikeness and convexity are obtained. By combining methods from complex analysis, inequalities, and functional analysis, the article advances the theory of Bessel functions and hypergeometric functions. The established results could be useful in approximation theory and bounding the behavior of functions.
引用
收藏
页数:19
相关论文
共 26 条
[1]   BOUNDS FOR RADII OF CONVEXITY OF SOME q-BESSEL FUNCTIONS [J].
Aktas, Ibrahim ;
Orhan, Halit .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (02) :355-369
[2]   Geometric and monotonic properties of hyper-Bessel functions [J].
Aktas, Ibrahim ;
Baricz, Arpad ;
Singh, Sanjeev .
RAMANUJAN JOURNAL, 2020, 51 (02) :275-295
[3]   Bounds for radii of starlikeness and convexity of some special functions [J].
Aktas, Ibrahim ;
Baricz, Arpad ;
Orhan, Halit .
TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (01) :211-226
[4]  
Aktas I, 2017, RESULTS MATH, V72, P947, DOI 10.1007/s00025-017-0668-6
[5]  
[Anonymous], 1996, Zeszyty Nauk. Politech. Rzeszowskiej Mat.
[6]  
Arfken G., 1985, Mathematical methods for physicists
[7]   Close-to-Convexity of Some Special Functions and Their Derivatives [J].
Baricz, Arpad ;
Szasz, Robert .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (01) :427-437
[8]   Starlikeness and convexity of generalized Bessel functions [J].
Baricz, Arpad ;
Ponnusamy, Saminathan .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (09) :641-653
[9]  
DUREN P. L, 1983, Grundlehren der Mathematischen Wissenschaften, V259
[10]  
Goodman A. W., 1991, Ann. Polon. Math., V56, P87, DOI DOI 10.4064/AP-56-1-87-92