Concentration on the boundary and sign-changing solutions for a slightly subcritical biharmonic problem

被引:0
作者
Alarcon, Salomon [1 ]
Faya, Jorge [2 ]
Rey, Carolina [1 ]
机构
[1] Univ Tecn Feder Santa Maria, Dept Matemat, Ave Espana 1680, Valparaiso 2390123, Chile
[2] Univ Austral Chile, Fac Ciencias, Inst Ciencias Fis & Matemat, Valdivia, Chile
关键词
ELLIPTIC-EQUATIONS; NODAL SOLUTIONS; EXISTENCE;
D O I
10.1016/j.jde.2025.113285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the fourth-order nonlinear elliptic problem: {Delta(a(x)Delta u) = a(x)|u|p-2-epsilon u in ohm, u=0 on partial derivative ohm, Delta u = 0 on partial derivative ohm, where ohm is a smooth, bounded domain in RN with N >= 5. Here, p := 2N N-4 is the Sobolev critical exponent for the embedding H2 boolean AND H01 (ohm)-* Lp(ohm), and a is an element of C2(ohm) is a strictly positive function on ohm. We establish sufficient conditions on the function a and the domain ohm for this problem to admit both positive and sign-changing solutions with an explicit asymptotic profile. These solutions concentrate and blow up at a point on the boundary partial derivative ohm as epsilon-* 0. The proofs of the main results rely on the LyapunovSchmidt finite-dimensional reduction method. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:49
相关论文
共 40 条
[31]   Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem [J].
Pistoia, Angela ;
Weth, Tobias .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (02) :325-340
[32]  
POKHOZHAEV SI, 1965, DOKL AKAD NAUK SSSR+, V165, P36
[33]   THE ROLE OF THE GREENS-FUNCTION IN A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT [J].
REY, O .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 89 (01) :1-52
[34]  
Rey O., 1991, Blow-up Points of Solutions to Elliptic Equations with Limiting Nonlinearity
[35]  
Silva E.D., 2022, Topol. Methods Nonlinear Anal., V59
[36]  
Van der Vorst R.C.A.M., 1993, Differ. Integral Equ., V6
[37]   Infinitely many sign-changing solutions for a class of biharmonic equation without symmetry [J].
Wang, Youjun ;
Shen, Yaotian .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) :967-977
[38]   Liouville theorems for stable solutions of biharmonic problem [J].
Wei, Juncheng ;
Ye, Dong .
MATHEMATISCHE ANNALEN, 2013, 356 (04) :1599-1612
[39]  
Xu G., 2003, J. Math. Anal. Appl., V281
[40]  
Yan Y., 2021, arXiv