The Potential Diagnostic Application of Artificial Intelligence in Breast Cancer

被引:0
作者
Behzadi, Matineh [1 ]
Azinfar, Anahita [1 ]
Alshakarchi, Hawraa Ibrahim [1 ,2 ]
Khazaei, Yeganeh [3 ]
Gataa, Ibrahim Saeed [4 ]
Ferns, Gordon A. [5 ]
Naderi, Hamid [1 ]
Avan, Amir [1 ,6 ]
Fiuji, Hamid [7 ]
Rad, Masoud Pezeshki [8 ,9 ]
机构
[1] Mashhad Univ Med Sci, Metab Syndrome Res Ctr, Mashhad, Iran
[2] Al Zahraa Univ Women, Al Zahraa Ctr Med & Pharmaceut Res Sci ZCMRS, Kerbala 56001, Iraq
[3] Mashhad Univ Med Sci, Med Genet Res Ctr, Mashhad, Iran
[4] Univ Warith Al Anbiyaa, Coll Med, Karbala 56001, Iraq
[5] Brighton & Sussex Med Sch, Dept Med Educ, Brighton BN1 9PH, Sussex, England
[6] Queensland Univ Technol QUT, Fac Hlth, Sch Biomed Sci, Brisbane, Qld 4059, Australia
[7] VU Univ Med Ctr VUMC, Amsterdam UMC, Canc Ctr Amsterdam, Dept Med Oncol, Amsterdam, Netherlands
[8] Mashhad Univ Med Sci, Fac Med, Dept Radiol, Mashhad, Iran
[9] Mashhad Univ Med Sci, Surg Oncol Res Ctr, Mashhad, Iran
关键词
Breast cancer; artificial intelligence; histopathological data; mammographic data; clinical diagnosis; convolutional neural networks; MAMMOGRAPHY; ESTROGEN;
D O I
10.2174/0113816128369168250311172823
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Breast cancer poses a significant global health challenge, necessitating improved diagnostic and treatment strategies. This review explores the role of artificial intelligence (AI) in enhancing breast cancer pathology, emphasizing risk assessment, early detection, and analysis of histopathological and mammographic data. AI platforms show promise in predicting breast cancer risks and identifying tumors up to three years before clinical diagnosis. Deep learning techniques, particularly convolutional neural networks (CNNs), effectively classify cancer subtypes and grade tumor risk, achieving accuracy comparable to expert radiologists. Despite these advancements, challenges, such as the need for high-quality datasets and integration into clinical workflows, persist. Continued research on AI technologies is essential for advancing breast cancer detection and improving patient outcomes.
引用
收藏
页码:2305 / 2314
页数:10
相关论文
共 67 条
[31]   Privacy-preserving artificial intelligence in healthcare: Techniques and applications [J].
Khalid, Nazish ;
Qayyum, Adnan ;
Bilal, Muhammad ;
Al-Fuqaha, Ala ;
Qadir, Junaid .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
[32]   AI Risk Score on Screening Mammograms Preceding Breast Cancer Diagnosis [J].
Larsen, Marthe ;
Olstad, Camilla F. ;
Koch, Henrik W. ;
Martiniussen, Marit A. ;
Hoff, Solveig R. ;
Lund-Hanssen, Hakon ;
Solli, Helene S. ;
Mikalsen, Karl Oyvind ;
Auensen, Steinar ;
Nygard, Jan ;
Lang, Kristina ;
Chen, Yan ;
Hofvind, Solveig .
RADIOLOGY, 2023, 309 (01)
[33]   Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images [J].
Lazard, Tristan ;
Bataillon, Guillaume ;
Naylor, Peter ;
Popova, Tatiana ;
Bidard, Francois-Clement ;
Stoppa-Lyonnet, Dominique ;
Stern, Marc-Henri ;
Decenciere, Etienne ;
Walter, Thomas ;
Vincent-Salomon, Anne .
CELL REPORTS MEDICINE, 2022, 3 (12)
[34]   Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementation [J].
Lehman, Constance D. ;
Yala, Adam ;
Schuster, Tal ;
Dontchos, Brian ;
Bahl, Manisha ;
Swanson, Kyle ;
Barzilay, Regina .
RADIOLOGY, 2019, 290 (01) :52-58
[35]  
Lester SC, 2009, ARCH PATHOL LAB MED, V133, P1515, DOI 10.1043/1543-2165-133.10.1515
[36]  
Liu YP, 2023, ARCH PATHOL LAB MED, V147, P1003, DOI [10.5858/arpa.2022-0457-RA), 10.5858/arpa.2022-0457-RA]
[37]  
Loibl S, 2024, Ann Oncol, V35, P159, DOI 10.1016/j.annonc.2023.11.016
[38]   The underuse of AI in the health sector: Opportunity costs, success stories, risks and recommendations [J].
Pagallo, Ugo ;
O'Sullivan, Shane ;
Nevejans, Nathalie ;
Holzinger, Andreas ;
Friebe, Michael ;
Jeanquartier, Fleur ;
Jean-Quartier, Claire ;
Miernik, Arkadiusz .
HEALTH AND TECHNOLOGY, 2024, 14 (01) :1-14
[39]  
Pai Rima, 2022, J Pathol Inform, V13, P100141, DOI 10.1016/j.jpi.2022.100141
[40]   Diagnostic performance of digital versus film mammography for breast-cancer screening [J].
Pisano, ED ;
Gatsonis, C ;
Hendrick, E ;
Yaffe, M ;
Baum, JK ;
Acharyya, S ;
Conant, EF ;
Fajardo, LL ;
Bassett, L ;
D'Orsi, C ;
Jong, R ;
Rebner, M .
NEW ENGLAND JOURNAL OF MEDICINE, 2005, 353 (17) :1773-1783