The Potential Diagnostic Application of Artificial Intelligence in Breast Cancer

被引:0
作者
Behzadi, Matineh [1 ]
Azinfar, Anahita [1 ]
Alshakarchi, Hawraa Ibrahim [1 ,2 ]
Khazaei, Yeganeh [3 ]
Gataa, Ibrahim Saeed [4 ]
Ferns, Gordon A. [5 ]
Naderi, Hamid [1 ]
Avan, Amir [1 ,6 ]
Fiuji, Hamid [7 ]
Rad, Masoud Pezeshki [8 ,9 ]
机构
[1] Mashhad Univ Med Sci, Metab Syndrome Res Ctr, Mashhad, Iran
[2] Al Zahraa Univ Women, Al Zahraa Ctr Med & Pharmaceut Res Sci ZCMRS, Kerbala 56001, Iraq
[3] Mashhad Univ Med Sci, Med Genet Res Ctr, Mashhad, Iran
[4] Univ Warith Al Anbiyaa, Coll Med, Karbala 56001, Iraq
[5] Brighton & Sussex Med Sch, Dept Med Educ, Brighton BN1 9PH, Sussex, England
[6] Queensland Univ Technol QUT, Fac Hlth, Sch Biomed Sci, Brisbane, Qld 4059, Australia
[7] VU Univ Med Ctr VUMC, Amsterdam UMC, Canc Ctr Amsterdam, Dept Med Oncol, Amsterdam, Netherlands
[8] Mashhad Univ Med Sci, Fac Med, Dept Radiol, Mashhad, Iran
[9] Mashhad Univ Med Sci, Surg Oncol Res Ctr, Mashhad, Iran
关键词
Breast cancer; artificial intelligence; histopathological data; mammographic data; clinical diagnosis; convolutional neural networks; MAMMOGRAPHY; ESTROGEN;
D O I
10.2174/0113816128369168250311172823
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Breast cancer poses a significant global health challenge, necessitating improved diagnostic and treatment strategies. This review explores the role of artificial intelligence (AI) in enhancing breast cancer pathology, emphasizing risk assessment, early detection, and analysis of histopathological and mammographic data. AI platforms show promise in predicting breast cancer risks and identifying tumors up to three years before clinical diagnosis. Deep learning techniques, particularly convolutional neural networks (CNNs), effectively classify cancer subtypes and grade tumor risk, achieving accuracy comparable to expert radiologists. Despite these advancements, challenges, such as the need for high-quality datasets and integration into clinical workflows, persist. Continued research on AI technologies is essential for advancing breast cancer detection and improving patient outcomes.
引用
收藏
页码:2305 / 2314
页数:10
相关论文
共 67 条
[1]   Artificial Intelligence in Breast Cancer Diagnosis and Personalized Medicine [J].
Ahn, Jong Seok ;
Shin, Sangwon ;
Yang, Su-A ;
Park, Eun Kyung ;
Kim, Ki Hwan ;
Cho, Soo Ick ;
Ock, Chan-Young ;
Kim, Seokhwi .
JOURNAL OF BREAST CANCER, 2023, 26 (05) :405-435
[2]   Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update [J].
Allison, Kimberly H. ;
Hammond, M. Elizabeth H. ;
Dowsett, Mitchell ;
McKernin, Shannon E. ;
Carey, Lisa A. ;
Fitzgibbons, Patrick L. ;
Hayes, Daniel F. ;
Lakhani, Sunil R. ;
Chavez-MacGregor, Mariana ;
Perlmutter, Jane ;
Perou, Charles M. ;
Regan, Meredith M. ;
Rimm, David L. ;
Symmans, W. Fraser ;
Torlakovic, Emina E. ;
Varella, Leticia ;
Viale, Giuseppe ;
Weisberg, Tracey F. ;
McShane, Lisa M. ;
Wolff, Antonio C. .
JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (12) :1346-+
[3]  
Allred DC, 1998, MODERN PATHOL, V11, P155
[4]  
AlSamhori J.F., 2024, J MED SURG PUBLIC HL, V3, DOI 10.1016/j.glmedi.2024.100120
[5]   'Earlier than Early' Detection of Breast Cancer in Israeli BRCA Mutation Carriers Applying AI-Based Analysis to Consecutive MRI Scans [J].
Anaby, Debbie ;
Shavin, David ;
Zimmerman-Moreno, Gali ;
Nissan, Noam ;
Friedman, Eitan ;
Sklair-Levy, Miri .
CANCERS, 2023, 15 (12)
[6]  
Andrew A., 2024, J. Med. Surg. Public Health, V4, P100157, DOI [10.1016/j.glmedi.2024.100157, DOI 10.1016/J.GLMEDI.2024.100157]
[7]   Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology [J].
Balasubramanian, Aadhi Aadhavan ;
Al-Heejawi, Salah Mohammed Awad ;
Singh, Akarsh ;
Breggia, Anne ;
Ahmad, Bilal ;
Christman, Robert ;
Ryan, Stephen T. ;
Amal, Saeed .
CANCERS, 2024, 16 (12)
[8]   Digital pathology and artificial intelligence in translational medicine and clinical practice [J].
Baxi, Vipul ;
Edwards, Robin ;
Montalto, Michael ;
Saha, Saurabh .
MODERN PATHOLOGY, 2022, 35 (01) :23-32
[9]   Deep Learning in Mammography Diagnostic Accuracy of a Multipurpose Image Analysis Software in the Detection of Breast Cancer [J].
Becker, Anton S. ;
Marcon, Magda ;
Ghafoor, Soleen ;
Wurnig, Moritz C. ;
Frauenfelder, Thomas ;
Boss, Andreas .
INVESTIGATIVE RADIOLOGY, 2017, 52 (07) :434-440
[10]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210