Resonant wave-particle interactions near the nonlinear threshold: A Type I Painlevé equation based model

被引:0
作者
Shi, Xiaofei [1 ]
Neishtadt, Anatoli I. [2 ]
Artemyev, Anton V. [1 ]
Albert, Jay M. [3 ]
Angelopoulos, Vassilis [1 ]
机构
[1] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA
[2] Loughborough Univ, Dept Math Sci, Loughborough, England
[3] Air Force Res Lab, Kirtland Afb, NM 87123 USA
关键词
ELECTROSTATIC-WAVES; ADIABATIC-INVARIANT; MAGNETIC-FIELD; SCATTERING; ELECTRONS; DYNAMICS; CAPTURE; ANGLE;
D O I
10.1063/5.0270444
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Wave-particle resonant interactions play a crucial role in the dynamics of energetic particle fluxes across various space plasma systems, including the near-Earth plasma environment. When waves are sufficiently intense, these interactions become strongly nonlinear, with effects of particle phase bunching and trapping. This paper examines several examples of nonlinear resonant interactions involving energetic electrons, intense whistler-mode waves, electromagnetic ion cyclotron waves, and kinetic Alfv & eacute;n waves within the Earth's inner magnetosphere. We focus on a specific scenario when resonant interactions occur near the threshold of the nonlinear regime. We demonstrate that, for such threshold wave amplitude, the classical model of resonant wave-particle interactions, represented by the pendulum equation, can be reduced to Type I Painlev & eacute; equation. We derive an equation describing the scaling of electron momentum (and thus energy) change with wave amplitude for this regime. We discuss the importance of this scaling in explaining observed energetic electron losses in Earth's inner magnetosphere.
引用
收藏
页数:12
相关论文
共 88 条
[1]   Diffusion by one wave and by many waves [J].
Albert, J. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
[2]  
Albert JM, 2009, GEOPHYS RES LETT, V36, DOI [10.1029/2009GL03 8904, 10.1029/2009GL038904]
[3]   Analytical results for phase bunching in the pendulum model of wave-particle interactions [J].
Albert, Jay M. ;
Artemyev, Anton ;
Li, Wen ;
Gan, Longzhi ;
Ma, Qianli .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
[4]  
Albert Jay M., 2013, Dynamics of the Earth's Radiation Belts and Inner Magnetosphere, P255, DOI [DOI 10.1029/2012GM001324, 10.1029/2012GM001324]
[5]   Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave [J].
Albert, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A9) :21191-21209
[6]   Observational Evidence for Stochastic Shock Drift Acceleration of Electrons at the Earth's Bow Shock [J].
Amano, T. ;
Katou, T. ;
Kitamura, N. ;
Oka, M. ;
Matsumoto, Y. ;
Hoshino, M. ;
Saito, Y. ;
Yokota, S. ;
Giles, B. L. ;
Paterson, W. R. ;
Russell, C. T. ;
Le Contel, O. ;
Ergun, R. E. ;
Lindqvist, P. -A. ;
Turner, D. L. ;
Fennell, J. F. ;
Blake, J. B. .
PHYSICAL REVIEW LETTERS, 2020, 124 (06)
[7]   Electron Dynamics in a Chorus Wave Field Generated From Particle-In-Cell Simulations [J].
An, Zeyu ;
Wu, Yifan ;
Tao, Xin .
GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (03)
[8]  
Andronov A.A., 1964, Geomagnetism and Aeronomy, V4, P233
[9]  
Angelopoulos V, 2008, SPACE SCI REV, V141, P5, DOI 10.1007/s11214-008-9336-1
[10]   Nonlinear Resonant Interactions of Radiation Belt Electrons with Intense Whistler-Mode Waves [J].
Artemyev, A. V. ;
Mourenas, D. ;
Zhang, X. -j. ;
Agapitov, O. ;
Neishtadt, A. I. ;
Vainchtein, D. L. ;
Vasiliev, A. A. ;
Zhang, X. ;
Ma, Q. ;
Bortnik, J. ;
Krasnoselskikh, V. V. .
SPACE SCIENCE REVIEWS, 2025, 221 (01)