A weighted networked eco-epidemiological model with nonlinear p-Laplacian

被引:0
作者
Zhou, Ling [1 ]
Ding, Guoqing [1 ]
Liu, Zuhan [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 04期
基金
中国国家自然科学基金;
关键词
network; p-Laplacian; eco-epidemiological model; global stability; ASYMPTOTIC PROFILES; STABILITY REGIONS; STEADY-STATES; DYNAMICS; DISEASE; PERSISTENCE; EQUATIONS; INVASION; SPREAD;
D O I
10.3934/math.2025423
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates a eco-epidemiological model with a graph p-Laplacian (p >= 2). We first overcome the difficulties caused by the nonlinearity of the p-Laplacian and show the existence and uniqueness of the global solution to the system. By the approach of Lyapunov functions and the comparison principle, we show that the trivial equilibrium, the disease-free equilibrium without predators, the coexisting disease-free equilibrium, the prey's endemic equilibrium, and the coexisting endemic equilibrium are asymptotically stable under the given conditions. With numerical simulations, we apply our generalized weighed graph to the Watts-Strogatz network, which illustrates the effect of population mobility.
引用
收藏
页码:9202 / 9236
页数:35
相关论文
共 42 条
[1]   Asymptotic profiles of the steady states for an sis epidemic patch model [J].
Allen, L. J. S. ;
Bolker, B. M. ;
Lou, Y. ;
Nevai, A. L. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) :1283-1309
[2]  
Allen LJS, 2008, DISCRETE CONT DYN-A, V21, P1
[3]   THE INVASION, PERSISTENCE AND SPREAD OF INFECTIOUS-DISEASES WITHIN ANIMAL AND PLANT-COMMUNITIES [J].
ANDERSON, RM ;
MAY, RM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1986, 314 (1167) :533-570
[4]   Harvesting as a disease control measure in an eco-epidemiological system - A theoretical study [J].
Bairagi, N. ;
Chaudhuri, S. ;
Chattopadhyay, J. .
MATHEMATICAL BIOSCIENCES, 2009, 217 (02) :134-144
[5]  
Bauer F, 2015, J DIFFER GEOM, V99, P359
[6]   On an eco-epidemiological model with prey harvesting and predator switching: Local and global perspectives [J].
Bhattacharyya, R. ;
Mukhopadhyay, B. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3824-3833
[7]   The second eigenvalue of the fractional p-Laplacian [J].
Brasco, Lorenzo ;
Parini, Enea .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) :323-355
[8]   STABILITY REGIONS IN PREDATOR-PREY SYSTEMS WITH CONSTANT-RATE PREY HARVESTING [J].
BRAUER, F ;
SOUDACK, AC .
JOURNAL OF MATHEMATICAL BIOLOGY, 1979, 8 (01) :55-71
[9]   STABILITY REGIONS AND TRANSITION PHENOMENA FOR HARVESTED PREDATOR-PREY SYSTEMS [J].
BRAUER, F ;
SOUDACK, AC .
JOURNAL OF MATHEMATICAL BIOLOGY, 1979, 7 (04) :319-337
[10]  
Cantrell R. S., 2003, Spatial ecology via reaction-diffusion equations