Linear preservers of secant varieties and other varieties of tensors

被引:0
作者
Gesmundo, Fulvio [1 ,2 ,3 ]
Han, Young In [4 ]
Lovitz, Benjamin [5 ]
机构
[1] Inst Math Toulouse, F-31062 Toulouse 9, France
[2] Univ Toulouse, UMR 5219, F-31062 Toulouse 9, France
[3] CNRS UPS, F-31062 Toulouse 9, France
[4] Univ Waterloo, Waterloo, ON, Canada
[5] Northeastern Univ, Boston, MA USA
基金
美国国家科学基金会;
关键词
Linear preserver; Secant variety; Tensor; VERONESE; SINGULARITIES; EQUATIONS; IDEALS;
D O I
10.1016/j.jsc.2025.102449
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of characterizing linear preserver subgroups of algebraic varieties, with a particular emphasis on secant varieties and other varieties of tensors. We introduce a number of techniques built on different geometric properties of the varieties of interest. Our main result is a simple characterization of the linear preservers of secant varieties of Segre varieties in many cases, including sigma r((Pn-1)xk) for all r 2J. We also characterize the linear preservers of several other sets of tensors, including subspace varieties, the variety of slice rank one tensors, symmetric tensors of bounded Waring rank, the variety of biseparable tensors, and hyperdeterminantal surfaces. Computational techniques and applications in quantum information theory are discussed. We provide geometric proofs for several previously known results on linear preservers. (c) 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:23
相关论文
共 57 条
[21]  
Gesmundo F., 2024, Linear-preservers-secant-varieties
[22]   Geometric aspects of Iterated Matrix Multiplication [J].
Gesmundo, Fulvio .
JOURNAL OF ALGEBRA, 2016, 461 :42-64
[23]  
Grayson D., Macaulay2, a software system for research in algebraic geometry
[24]   Some general techniques on linear preserver problems [J].
Guterman, A ;
Li, CK ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 315 (1-3) :61-81
[25]   On singularities of third secant varieties of Veronese embeddings [J].
Han, Kangjin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 :391-406
[26]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[27]  
Harris J., 1992, Graduate Texts in Mathematics, V133
[28]  
Hartshorne R., 1977, Graduate Texts in Mathematics, V52
[29]  
Humphreys J.E., 2012, Graduate Texts in Mathematics, V21
[30]   Characterizing operations preserving separability measures via linear preserver problems [J].
Johnston, Nathaniel .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (10) :1171-1187