SELF-SUPERVISED LEARNING OF DENSE HIERARCHICAL REPRESENTATIONS FOR MEDICAL IMAGE SEGMENTATION

被引:0
作者
Kats, Eytan [1 ]
Hirsch, Jochen G. [2 ]
Heinrich, Mattias P. [1 ]
机构
[1] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[2] Fraunhofer Inst Digital Med MEVIS, Bremen, Germany
来源
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024 | 2024年
关键词
Self-supervised learning; voxel-wise embeddings; segmentation;
D O I
10.1109/ISBI56570.2024.10635522
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper demonstrates a self-supervised framework for learning voxel-wise coarse-to-fine representations tailored for dense downstream tasks. Our approach stems from the observation that existing methods for hierarchical representation learning tend to prioritize global features over local features due to inherent architectural bias. To address this challenge, we devise a training strategy that balances the contributions of features from multiple scales, ensuring that the learned representations capture both coarse and fine-grained details. Our strategy incorporates 3-fold improvements: (1) local data augmentations, (2) a hierarchically balanced architecture, and (3) a hybrid contrastive-restorative loss function. We evaluate our method on CT and MRI data and demonstrate that our new approach particularly beneficial for finetuning with limited annotated data and consistently outperforms the baseline counterpart in linear evaluation settings. Our code and pre-trained models will be publicly available at https://github.com/multimodallearning/hierarchical-dense-ssl.
引用
收藏
页数:5
相关论文
共 17 条
[11]   Fast and Low-GPU-memory abdomen CT organ segmentation: The FLARE challenge [J].
Ma, Jun ;
Zhang, Yao ;
Gu, Song ;
An, Xingle ;
Wang, Zhihe ;
Ge, Cheng ;
Wang, Congcong ;
Zhang, Fan ;
Wang, Yu ;
Xu, Yinan ;
Gou, Shuiping ;
Thaler, Franz ;
Payer, Christian ;
Stern, Darko ;
Henderson, Edward G. A. ;
McSweeney, Donal M. ;
Green, Andrew ;
Jackson, Price ;
McIntosh, Lachlan ;
Nguyen, Quoc-Cuong ;
Qayyum, Abdul ;
Conze, Pierre-Henri ;
Huang, Ziyan ;
Zhou, Ziqi ;
Fan, Deng-Ping ;
Xiong, Huan ;
Dong, Guoqiang ;
Zhu, Qiongjie ;
He, Jian ;
Yang, Xiaoping .
MEDICAL IMAGE ANALYSIS, 2022, 82
[12]   Respiratory signal and human stress: non-contact detection of stress with a low-cost depth sensing camera [J].
Shan, Yuhao ;
Li, Shigang ;
Chen, Tong .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (08) :1825-1837
[13]   Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis [J].
Tang, Yucheng ;
Yang, Dong ;
Li, Wenqi ;
Roth, Holger R. ;
Landman, Bennett ;
Xu, Daguang ;
Nath, Vishwesh ;
Hatamizadeh, Ali .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :20698-20708
[14]   Dense Contrastive Learning for Self-Supervised Visual Pre-Training [J].
Wang, Xinlong ;
Zhang, Rufeng ;
Shen, Chunhua ;
Kong, Tao ;
Li, Lei .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :3023-3032
[15]   SAM: Self-Supervised Learning of Pixel-Wise Anatomical Embeddings in Radiological Images [J].
Yan, Ke ;
Cai, Jinzheng ;
Jin, Dakai ;
Miao, Shun ;
Guo, Dazhou ;
Harrison, Adam P. ;
Tang, Youbao ;
Xiao, Jing ;
Lu, Jingjing ;
Lu, Le .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (10) :2658-2669
[16]   Rethinking the Augmentation Module in Contrastive Learning: Learning Hierarchical Augmentation Invariance with Expanded Views [J].
Zhang, Junbo ;
Ma, Kaisheng .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16629-16638
[17]  
Zhou Zongwei, 2019, INT C MED IM COMP CO