SELF-SUPERVISED LEARNING OF DENSE HIERARCHICAL REPRESENTATIONS FOR MEDICAL IMAGE SEGMENTATION

被引:0
作者
Kats, Eytan [1 ]
Hirsch, Jochen G. [2 ]
Heinrich, Mattias P. [1 ]
机构
[1] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[2] Fraunhofer Inst Digital Med MEVIS, Bremen, Germany
来源
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024 | 2024年
关键词
Self-supervised learning; voxel-wise embeddings; segmentation;
D O I
10.1109/ISBI56570.2024.10635522
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper demonstrates a self-supervised framework for learning voxel-wise coarse-to-fine representations tailored for dense downstream tasks. Our approach stems from the observation that existing methods for hierarchical representation learning tend to prioritize global features over local features due to inherent architectural bias. To address this challenge, we devise a training strategy that balances the contributions of features from multiple scales, ensuring that the learned representations capture both coarse and fine-grained details. Our strategy incorporates 3-fold improvements: (1) local data augmentations, (2) a hierarchically balanced architecture, and (3) a hybrid contrastive-restorative loss function. We evaluate our method on CT and MRI data and demonstrate that our new approach particularly beneficial for finetuning with limited annotated data and consistently outperforms the baseline counterpart in linear evaluation settings. Our code and pre-trained models will be publicly available at https://github.com/multimodallearning/hierarchical-dense-ssl.
引用
收藏
页数:5
相关论文
共 17 条
[1]  
Bamberg F, 2022, EUR J PUBLIC HEALTH, V32
[2]   Masked Image Modeling Advances 3D Medical Image Analysis [J].
Chen, Zekai ;
Agarwal, Devansh ;
Aggarwal, Kshitij ;
Safta, Wiem ;
Balan, Mariann Micsinai ;
Brown, Kevin .
2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, :1969-1979
[3]  
Goncharov M., 2023, INT C MED IM COMP CO
[4]  
Haghighi F, 2022, PROC CVPR IEEE, P20792, DOI [10.1109/CVPR52688.2022.02016, 10.1109/cvpr52688.2022.02016]
[5]   Masked Autoencoders Are Scalable Vision Learners [J].
He, Kaiming ;
Chen, Xinlei ;
Xie, Saining ;
Li, Yanghao ;
Dollar, Piotr ;
Girshick, Ross .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :15979-15988
[6]  
Huang Y., 2021, INT C MED IM COMP CO
[7]  
Ji Yuanfeng, 2022, Advances in Neural Information Processing Systems
[8]   Low-complexity Channel Estimation and Localization with Random Beamspace Observations [J].
Jiang, Fan ;
Ge, Yu ;
Zhu, Meifang ;
Wymeersch, Henk ;
Tufvesson, Fredrik .
ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, :5985-5990
[9]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[10]  
Landman Bennett, 2015, Miccai multi-atlas labeling beyond the cranial vault-workshop and challenge