Mitochondria-Targeted Energy Disruptor for Augmented Mild Hyperthermia Therapy of Orthotopic Lung Cancer

被引:0
作者
Jiang, Renting [1 ]
Lu, Yaxuan [1 ]
Li, Linhu [1 ]
Su, Hua [1 ]
Shan, Beibei [1 ,2 ]
Li, Ming [1 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Hunan Univ Arts & Sci, Coll Chem & Mat Engn, Changde 415000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
energy supply disruption; lung cancer; mild photothermal therapy; mitochondria-targeting; thermal resistance; HEAT-SHOCK-PROTEIN-70; METABOLISM; HSP90; SERS;
D O I
10.1002/adfm.202511217
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mild-temperature photohyperthermia therapy (mild PHT) represents a promising therapeutic strategy for fighting against cancer, yet thermal resistance is a significant factor limiting its therapeutic potency. Herein, this study presents a mitochondria-targeted energy disruptor that synergistically enhances mild PHT efficacy in orthotopic lung cancer through heat shock protein 70 (Hsp70)-mediated thermal tolerance reversal and mitochondrial adenosine triphosphate (ATP) biosynthesis blockade. This strategy is primarily based on the mito-siH-SERS probes consisting of mitochondria-targeted surface-enhanced Raman spectroscopy (SERS) nanoparticles loaded with small-interference RNA against Hsp70 (siHsp70). The mito-siH-SERS probe can trigger targeted mitochondrial damage due to the mild PHT effect under near-infrared light irradiation. Evidently, both the released siHsp70 and photothermally induced mitochondrial dysfunction collectively downregulate the intracellular Hsp70 expression. Through disrupting the mitochondrial energy supply and reversing the thermal tolerance, this strategy achieves remarkable therapeutic performance for SERS-guided mild PHT treatment of orthotopic lung tumors in mice. Overall, this work provides an effective strategy for restraining the mitochondrial energy supply and reducing the tumor thermal resistance for amplified cancer mild PHT.
引用
收藏
页数:14
相关论文
共 52 条
[1]   Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial [J].
Albain, Kathy S. ;
Swann, R. Suzanne ;
Rusch, Valerie W. ;
Turrisi, Andrew T., III ;
Shepherd, Frances A. ;
Smith, Colum ;
Chen, Yuhchyau ;
Livingston, Robert B. ;
Feins, Richard H. ;
Gandara, David R. ;
Fry, Willard A. ;
Darling, Gail ;
Johnson, David H. ;
Green, Mark R. ;
Miller, Robert C. ;
Ley, Joanne ;
Sause, Willliam T. ;
Cox, James D. .
LANCET, 2009, 374 (9687) :379-386
[2]   Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy [J].
Ali, Moustafa R. K. ;
Ali, Hala R. ;
Rankin, Carl R. ;
El-Sayed, Mostafa A. .
BIOMATERIALS, 2016, 102 :1-8
[3]   Lung Cancer and Its Early Detection Using Biomarker-Based Biosensors [J].
Arya, Sunil K. ;
Bhansali, Shekhar .
CHEMICAL REVIEWS, 2011, 111 (11) :6783-6809
[4]   Discovery and validation of small-molecule heat-shock protein 90 inhibitors through multimodality molecular imaging in living subjects [J].
Chan, Carmel T. ;
Reeves, Robert E. ;
Geller, Ron ;
Yaghoubi, Shahriar S. ;
Hoehne, Aileen ;
Solow-Cordero, David E. ;
Chiosis, Gabriela ;
Massoud, Tarik F. ;
Paulmurugan, Ramasamy ;
Gambhir, Sanjiv S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (37) :E2476-E2485
[5]   Single-Atom Pd Nanozyme for Ferroptosis-Boosted Mild-Temperature Photothermal Therapy [J].
Chang, Mengyu ;
Hou, Zhiyao ;
Wang, Man ;
Yang, Chunzheng ;
Wang, Ruifeng ;
Li, Fang ;
Liu, Donglian ;
Peng, Tieli ;
Li, Chunxia ;
Lin, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (23) :12971-12979
[6]   Molecular-Sieving Label-Free Surface-Enhanced Raman Spectroscopy for Sensitive Detection of Trace Small-Molecule Biomarkers in Clinical Samples [J].
Chen, Mingyang ;
Xie, Yangcenzi ;
Li, Ming .
NANO LETTERS, 2024, 24 (37) :11520-11528
[7]   Overcoming the Heat Endurance of Tumor Cells by Interfering with the Anaerobic Glycolysis Metabolism for Improved Photothermal Therapy [J].
Chen, Wei-Hai ;
Luo, Guo-Feng ;
Lei, Qi ;
Hong, Sheng ;
Qiu, Wen-Xiu ;
Liu, Li-Han ;
Cheng, Si-Xue ;
Zhang, Xian-Zheng .
ACS NANO, 2017, 11 (02) :1419-1431
[8]  
Cheng J., 2023, Angew. Chem., V62
[9]   Hyaluronic Acid-Based Activatable Nanomaterials for Stimuli-Responsive Imaging and Therapeutics: Beyond CD44-Mediated Drug Delivery [J].
Choi, Ki Young ;
Han, Hwa Seung ;
Lee, Eun Sook ;
Shin, Jung Min ;
Almquist, Benjamin D. ;
Lee, Doo Sung ;
Park, Jae Hyung .
ADVANCED MATERIALS, 2019, 31 (34)
[10]   Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors [J].
Ganesh, Shanthi ;
Iyer, Arun K. ;
Morrissey, David V. ;
Amiji, Mansoor M. .
BIOMATERIALS, 2013, 34 (13) :3489-3502