PPIxGPN: plasma proteomic profiling of neurodegenerative biomarkers with protein-protein interaction-based eXplainable graph propagational network

被引:0
作者
Park, Sunghong [1 ]
Lee, Dong-gi [2 ]
Kim, Juhyeon [3 ,4 ]
Kim, Seung Ho [1 ,5 ]
Hwang, Hyeon Jin [1 ,5 ]
Shin, Hyunjung [3 ,6 ]
Woo, Hyun Goo [1 ,5 ,7 ]
机构
[1] Ajou Univ, Dept Physiol, Sch Med, Worldcup Ro 164, Suwon 16499, South Korea
[2] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[3] Ajou Univ, Dept Ind Engn, Worldcup Ro 206, Suwon 16499, South Korea
[4] Korea Inst Sci & Technol Informat, Dept Data Ctr Problem Solving Res, Daehak Ro 245, Daejeon 34141, South Korea
[5] Ajou Univ, Dept Biomed Sci, Grad Sch, Worldcup Ro 164, Suwon 16499, South Korea
[6] Ajou Univ, Dept Artificial Intelligence, Worldcup Ro 206, Suwon 16499, South Korea
[7] Ajou Univ, Res Inst Innovat Med, Ajou Translat Om Ctr, Med Ctr, Worldcup Ro 164, Suwon 16499, South Korea
基金
新加坡国家研究基金会;
关键词
neurodegenerative diseases; blood-based biomarkers; protein-protein interaction; graph neural network; explainable machine learning;
D O I
10.1093/bib/bbaf213
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Neurodegenerative diseases involve progressive neuronal dysfunction, requiring the identification of specific pathological features for accurate diagnosis. While cerebrospinal fluid analysis and neuroimaging are commonly used, their invasive nature and high costs limit clinical applicability. Recently advances in plasma proteomics offer a less invasive and cost-effective alternative, further enhanced by machine learning (ML). However, most ML-based studies overlook synergetic effects from protein-protein interactions (PPIs), which play a key role in disease mechanisms. Although graph convolutional network and its extensions can utilize PPIs, they rely on locality-based feature aggregation, overlooking essential components and emphasizing noisy interactions. Moreover, expanding those methods to cover broader PPIs results in complex model architectures that reduce explainability, which is crucial in medical ML models for clinical decision-making. To address these challenges, we propose Protein-Protein Interaction-based eXplainable Graph Propagational Network (PPIxGPN), a novel ML model designed for plasma proteomic profiling of neurodegenerative biomarkers. PPIxGPN captures synergetic effects between proteins by integrating PPIs with independent effects of proteins, leveraging globality-based feature aggregation to represent comprehensive PPI properties. This process is implemented using a single graph propagational layer, enabling PPIxGPN to be configured by shallow architecture, thereby PPIxGPN ensures high model explainability, enhancing clinical applicability by providing interpretable outputs. Experimental validation on the UK Biobank dataset demonstrated the superior performance of PPIxGPN in neurodegenerative risk prediction, outperforming comparison methods. Furthermore, the explainability of PPIxGPN facilitated detailed analyses of the discriminative significance of synergistic effects, the predictive importance of proteins, and the longitudinal changes in biomarker profiles, highlighting its clinical relevance.
引用
收藏
页数:13
相关论文
共 59 条
[1]   Blood GFAP as an emerging biomarker in brain and spinal cord disorders [J].
Abdelhak, Ahmed ;
Foschi, Matteo ;
Abu-Rumeileh, Samir ;
Yue, John K. ;
D'Anna, Lucio ;
Huss, Andre ;
Oeckl, Patrick ;
Ludolph, Albert C. ;
Kuhle, Jens ;
Petzold, Axel ;
Manley, Geoffrey T. ;
Green, Ari J. ;
Otto, Markus ;
Tumani, Hayrettin .
NATURE REVIEWS NEUROLOGY, 2022, 18 (03) :158-172
[2]  
Abu-El-Haifa S, 2019, PR MACH LEARN RES, V97
[3]   The Promise of Explainable AI in Digital Health for Precision Medicine: A Systematic Review [J].
Allen, Ben .
JOURNAL OF PERSONALIZED MEDICINE, 2024, 14 (03)
[4]   Predicting early Alzheimer's with blood biomarkers and clinical features [J].
Almansoori, Muaath Ebrahim ;
Jemimah, Sherlyn ;
Abuhantash, Ferial ;
Alshehhi, Aamna .
SCIENTIFIC REPORTS, 2024, 14 (01)
[5]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[6]   Introducing neurofilament light chain measure in psychiatry: current evidence, opportunities, and pitfalls [J].
Bavato, Francesco ;
Barro, Christian ;
Schnider, Laura K. ;
Simren, Joel ;
Zetterberg, Henrik ;
Seifritz, Erich ;
Quednow, Boris B. .
MOLECULAR PSYCHIATRY, 2024, 29 (08) :2543-2559
[7]   Association of Plasma Amyloid, P-Tau, GFAP, and NfL With CSF, Clinical, and Cognitive Features in Patients With Dementia With Lewy Bodies [J].
Bolsewig, Katharina ;
van Unnik, Annemartijn A. J. M. ;
Blujdea, Elena R. ;
Gonzalez, Maria C. ;
Ashton, Nicholas J. ;
Aarsland, Dag ;
Zetterberg, Henrik ;
Padovani, Alessandro ;
Bonanni, Laura ;
Mollenhauer, Brit ;
Schade, Sebastian ;
Vandenberghe, Rik ;
Poesen, Koen ;
Kramberger, Milica G. ;
Paquet, Claire ;
Bousiges, Olivier ;
Cretin, Benjamin ;
Willemse, Eline A. J. ;
Teunissen, Charlotte E. ;
Lemstra, Afina W. .
NEUROLOGY, 2024, 102 (12)
[8]   Optimization Methods for Large-Scale Machine Learning [J].
Bottou, Leon ;
Curtis, Frank E. ;
Nocedal, Jorge .
SIAM REVIEW, 2018, 60 (02) :223-311
[9]   The IntAct database: efficient access to fine-grained molecular interaction data [J].
del Toro, Noemi ;
Shrivastava, Anjali ;
Ragueneau, Eliot ;
Meldal, Birgit ;
Combe, Colin ;
Barrera, Elisabet ;
Perfetto, Livia ;
How, Karyn ;
Ratan, Prashansa ;
Shirodkar, Gautam ;
Lu, Odilia ;
Meszaros, Balint ;
Watkins, Xavier ;
Pundir, Sangya ;
Licata, Luana ;
Iannuccelli, Marta ;
Pellegrini, Matteo ;
Martin, Maria Jesus ;
Panni, Simona ;
Duesbury, Margaret ;
Vallet, Sylvain D. ;
Rappsilber, Juri ;
Ricard-Blum, Sylvie ;
Cesareni, Gianni ;
Salwinski, Lukasz ;
Orchard, Sandra ;
Porras, Pablo ;
Panneerselvam, Kalpana ;
Hermjakob, Henning .
NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) :D648-D653
[10]   Machine learning-based approaches for disease gene prediction [J].
Duc-Hau Le .
BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (5-6) :350-363