SCATTERING THRESHOLD FOR RADIAL BI-HARMONIC SCHRODINGER EQUATIONS

被引:0
作者
Boulaaras, Salah Mahmoud [1 ]
Saanouni, Tarek [1 ]
机构
[1] Qassim Univ, Coll Sci, Dept Math, Buraydah 51452, Saudi Arabia
关键词
Fourth-Order Schr & ouml; dinger Problem; Nonlinear Equations; Energy-Scattering; Blow-Up; GLOBAL WELL-POSEDNESS; SINGULAR SOLUTIONS; BLOW-UP; 4TH-ORDER;
D O I
10.1142/S0218348X25401498
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper examines the asymptotic behavior of energy solutions to a fourth-order Schrodinger equation featuring a mixed nonlinearity. The aim is to analyze the competition between two source terms with opposite signs. Specifically, the paper demonstrates energy scattering versus finite-time blow-up of energy solutions in the inter-critical regime within a radial setting. The primary challenge arises from the absence of scaling invariance. For scattering, the method developed by Dodson-Murphy, which relies on Morawetz estimates and Tao's criteria, is employed. The assumption of spherical symmetry is essential for three reasons: first, because the rearrangement argument does not hold; second, to apply radial Strauss estimates; and third, due to the absence of a variance identity.
引用
收藏
页数:15
相关论文
共 30 条
[1]   MATHEMATICAL MODELING AND STABILITY ANALYSIS OF THE DYNAMICS OF MONKEYPOX VIA FRACTIONAL-CALCULUS [J].
Alharbi, Rabab ;
Jan, Rashid ;
Alyobi, Sultan ;
Altayeb, Yousif ;
Khan, Ziad .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (10)
[2]   Mathematical study of the dynamics of lymphatic filariasis infection via fractional-calculus [J].
Alshehri, Ahmed ;
Shah, Zahir ;
Jan, Rashid .
EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03)
[3]   Fractional view analysis of sexual transmitted human papilloma virus infection for public health [J].
Bahi, Mohammed Cherif ;
Bahramand, Salma ;
Jan, Rashid ;
Boulaaras, Salah ;
Ahmad, Hassan ;
Guefaifia, Rafik .
SCIENTIFIC REPORTS, 2024, 14 (01)
[4]   Singular solutions of the L2-supercritical biharmonic nonlinear Schrodinger equation [J].
Baruch, G. ;
Fibich, G. .
NONLINEARITY, 2011, 24 (06) :1843-1859
[5]   SINGULAR SOLUTIONS OF THE BIHARMONIC NONLINEAR SCHRODINGER EQUATION [J].
Baruch, G. ;
Fibich, G. ;
Mandelbaum, E. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (08) :3319-3341
[6]   Ring-type singular solutions of the biharmonic nonlinear Schrodinger equation [J].
Baruch, G. ;
Fibich, G. ;
Mandelbaum, E. .
NONLINEARITY, 2010, 23 (11) :2867-2887
[7]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[8]   BLOWUP FOR BIHARMONIC NLS [J].
Boulenger, Thomas ;
Lenzmann, Enno .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2017, 50 (03) :503-544
[9]   Dynamics of radial solutions for the focusing fourth-order nonlinear Schrodinger equations [J].
Dinh, Van Duong .
NONLINEARITY, 2021, 34 (02) :776-821
[10]   A NEW PROOF OF SCATTERING BELOW THE GROUND STATE FOR THE 3D RADIAL FOCUSING CUBIC NLS [J].
Dodson, Benjamin ;
Murphy, Jason .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) :4859-4867