MICRO-EXPRESSION RECOGNITION BY FUSING ACTION UNIT DETECTION AND SPATIO-TEMPORAL FEATURES

被引:5
作者
Wang, Lei [1 ]
Huang, Pinyi [1 ]
Cai, Wangyang [2 ]
Liu, Xiyao [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha, Peoples R China
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024 | 2024年
关键词
Micro-expression recognition; AU detection; spatio-temporal features; graph convolutional network;
D O I
10.1109/ICASSP48485.2024.10446702
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Micro-expressions (MEs) are subtle and brief facial expressions that occur involuntarily and may reveal hidden emotions. Due to MEs' weak intensities, it is challenging to discriminate MEs from image noise through AU detection results or spatio-temporal features. To model authentic ME patterns rather than overfitting to noise, we propose a novel multi-frame strategy that captures detailed motion patterns and a two-layered feature encoding scheme to model interactions across different parts of the feature maps. Furthermore, we propose a novel facial Action Unit Graph Convolutional Network (AU GCN) that can adapt to testing input data through an AU detection module and a learnable adjacent matrix with a transformer encoder. Finally, we fuse the enhanced spatio-temporal features and AU GCN results to recognize MEs. Experimental results show that our methods outperform SOTA in F1 scores on SAMM and CASME II datasets, and also achieves the highest accuracy on CASME II dataset.
引用
收藏
页码:5595 / 5599
页数:5
相关论文
共 23 条
[1]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[2]   SAMM: A Spontaneous Micro-Facial Movement Dataset [J].
Davison, Adrian K. ;
Lansley, Cliff ;
Costen, Nicholas ;
Tan, Kevin ;
Yap, Moi Hoon .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2018, 9 (01) :116-129
[3]   Comparison of ARIMA and LSTM in Predicting Structural Deformation of Tunnels during Operation Period [J].
Duan, Chuangfeng ;
Hu, Min ;
Zhang, Haozuan .
DATA, 2023, 8 (06)
[4]  
Ekman P., 1985, Telling lies: Clues to deceit in the marketplace, politics, and marriage
[5]  
Huang ZX, 2020, IEEE SYS MAN CYBERN, P1566, DOI [10.1109/SMC42975.2020.9283335, 10.1109/smc42975.2020.9283335]
[6]   SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period [J].
Santerne, A. ;
Moutou, C. ;
Tsantaki, M. ;
Bouchy, F. ;
Hebrard, G. ;
Adibekyan, V. ;
Almenara, J. -M. ;
Amard, L. ;
Barros, S. C. C. ;
Boisse, I. ;
Bonomo, A. S. ;
Bruno, G. ;
Courcol, B. ;
Deleuil, M. ;
Demangeon, O. ;
Diaz, R. F. ;
Guillot, T. ;
Havel, M. ;
Montagnier, G. ;
Rajpurohit, A. S. ;
Rey, J. ;
Santos, N. C. .
ASTRONOMY & ASTROPHYSICS, 2016, 587
[7]   A Novel Graph-TCN with a Graph Structured Representation for Micro-expression Recognition [J].
Lei, Ling ;
Li, Jianfeng ;
Chen, Tong ;
Li, Shigang .
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, :2237-2245
[8]   Micro-expression Recognition Based on Facial Graph Representation Learning and Facial Action Unit Fusion [J].
Lei, Ling ;
Chen, Tong ;
Li, Shigang ;
Li, Jianfeng .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, :1571-1580
[9]   Micro-expression recognition based on 3D flow convolutional neural network [J].
Li, Jing ;
Wang, Yandan ;
See, John ;
Liu, Wenbin .
PATTERN ANALYSIS AND APPLICATIONS, 2019, 22 (04) :1331-1339
[10]   Conformation and Catalytic Properties Studies of Candida rugosa Lip7 via Enantioselective Esterification of Ibuprofen in Organic Solvents and Ionic Liquids [J].
Li, Xiang ;
Huang, Shuangshuang ;
Xu, Li ;
Yan, Yunjun .
SCIENTIFIC WORLD JOURNAL, 2013,