Chemical Dynamics Simulations of Water Collisions with a Graphite Surface

被引:0
作者
Luo, Yuheng [1 ]
Kang, Christopher [1 ]
Gibson, Kevin D. [2 ,3 ]
Sibener, Steven J. [2 ,3 ]
Sun, Rui [1 ]
机构
[1] Univ Hawaii, Dept Chem, Honolulu, HI 96822 USA
[2] Univ Chicago, James Franck Inst, 929 East 57th St, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
ENERGY; PROGRAM;
D O I
10.1021/acs.jpcc.5c01227
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study presents a comprehensive analysis of the scattering dynamics of D2O molecules on highly oriented pyrolytic graphite surfaces using molecular dynamics simulations. The MD simulation protocols are validated against experiments, which contain only in-plane scattering [. However, the in-plane results fail to capture the overall dynamics due to the significant contribution of out-of-plane scattering, which is difficult to measure. In this study, our simulations consider both in- and out-of-plane scatterings and show that the intermediate incident angle (similar to 40 degrees) minimizes water-HOPG interaction. By analyzing the relation between the number of internal turning points, we relate the incident angle to the rate of thermalization of the scattered-off molecules. Our findings highlight the capability of MD simulations to model complex gas-surface interactions that are difficult to capture experimentally, offering an effective and accurate method for future studies across a wider range of energies, temperatures, surfaces, and multimolecule interactions.
引用
收藏
页码:9498 / 9508
页数:11
相关论文
共 34 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]  
Aksenova O., 2017, 7 EUR C AER SPAC SCI, P8
[3]  
Berthelot D., 1898, CR HEBD ACAD SCI, V126
[4]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[5]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[6]   The Effects of Icing on Aircraft Longitudinal Aerodynamic Characteristics [J].
Cao, Yihua ;
Tan, Wenyuan ;
Su, Yuan ;
Xu, Zhongda ;
Zhong, Guo .
MATHEMATICS, 2020, 8 (07)
[7]   CHARMM-GUI Nanomaterial Modeler for Modeling and Simulation of Nanomaterial Systems [J].
Choi, Yeol Kyo ;
Kern, Nathan R. ;
Kim, Seonghan ;
Kanhaiya, Krishan ;
Afshar, Yaser ;
Jeon, Sun Hee ;
Jo, Sunhwan ;
Brooks, Bernard R. ;
Lee, Jumin ;
Tadmor, Ellad B. ;
Heinz, Hendrik ;
Im, Wonpil .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (01) :479-493
[8]   Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity [J].
Cox, Stephen J. ;
Kathmann, Shawn M. ;
Slater, Ben ;
Michaelides, Angelos .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (18)
[9]   Theoretical analysis of the relation between H2 dissociation and reflection on Pd surfaces [J].
Díaz, C ;
Martín, F ;
Busnengo, HF ;
Salin, A .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (01) :321-328
[10]  
Diez Muino R., 2013, SPRINGER SERIES SURF, V50