On mappings generating embedding operators in Sobolev classes on metric measure spaces

被引:0
作者
Menovschikov, Alexander [1 ]
Ukhlov, Alexander [2 ]
机构
[1] HSE Univ, Dept Math, Moscow, Russia
[2] Ben Gurion Univ Negev, Dept Math, POB 653, IL-8410501 Beer Sheva, Israel
关键词
Sobolev spaces; Composition operators; Metric measure spaces; QUASI-CONFORMAL MAPPINGS; GEOMETRIC-PROPERTIES; NEUMANN PROBLEM; VALUES; MINIMIZERS; EXTENSION; VARIABLES;
D O I
10.1016/j.jmaa.2025.129716
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study homeomorphisms phi : Omega -> (Omega) over tilde that generate embedding operators in Sobolev classes on metric measure spaces X by the composition rule phi*(f ) = f degrees phi. In turn, this leads to Sobolev type embedding theorems for a wide class of domains (Omega) over tilde subset of X. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:23
相关论文
共 53 条
[51]  
Vodopyanov SK., 1988, The Taylor Formula and Function Spaces
[52]  
Vodopyanov SK., 2004, Siberian Adv. Math, V14, P78
[53]   CHANGE OF VARIABLES FOR ABSOLUTELY CONTINUOUS FUNCTIONS [J].
ZIEMER, WP .
DUKE MATHEMATICAL JOURNAL, 1969, 36 (01) :171-&