On mappings generating embedding operators in Sobolev classes on metric measure spaces

被引:0
作者
Menovschikov, Alexander [1 ]
Ukhlov, Alexander [2 ]
机构
[1] HSE Univ, Dept Math, Moscow, Russia
[2] Ben Gurion Univ Negev, Dept Math, POB 653, IL-8410501 Beer Sheva, Israel
关键词
Sobolev spaces; Composition operators; Metric measure spaces; QUASI-CONFORMAL MAPPINGS; GEOMETRIC-PROPERTIES; NEUMANN PROBLEM; VALUES; MINIMIZERS; EXTENSION; VARIABLES;
D O I
10.1016/j.jmaa.2025.129716
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study homeomorphisms phi : Omega -> (Omega) over tilde that generate embedding operators in Sobolev classes on metric measure spaces X by the composition rule phi*(f ) = f degrees phi. In turn, this leads to Sobolev type embedding theorems for a wide class of domains (Omega) over tilde subset of X. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:23
相关论文
共 53 条
[41]   Modulus inequalities for mappings with weighted bounded (p, q)-distortion [J].
Tryamkin, M. V. .
SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (06) :1114-1132
[42]  
UKHLOV AD, 1993, SIBERIAN MATH J+, V34, P165
[43]   Differential and geometric properties of Sobolev mappings [J].
Ukhlov, AD .
MATHEMATICAL NOTES, 2004, 75 (1-2) :291-294
[44]  
Vodop'yanov SK, 2020, MATH NOTES+, V108, P889, DOI 10.1134/S0001434620110310
[45]   Sobolev spaces and (P,Q)-quasiconformal mappings of carnot groups [J].
Vodop'yanov, SK ;
Ukhlov, AD .
SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (04) :665-682
[46]  
Vodop'yanov SK, 2002, DOKL MATH, V66, P253
[47]  
Vodopyanov S.K., 2024, Functional Spaces. Differential Operators. Problems of Mathematics Education, V70, P215
[48]  
Vodopyanov S.K., 1996, Sib. Adv. Math., V6, P27
[49]   Monotone functions and quasiconformal mappings on Carnot groups [J].
Vodopyanov, SK .
SIBERIAN MATHEMATICAL JOURNAL, 1996, 37 (06) :1113-1136
[50]  
Vodopyanov SK., 2005, Siberian Adv. Math, V15, P91