On mappings generating embedding operators in Sobolev classes on metric measure spaces

被引:0
作者
Menovschikov, Alexander [1 ]
Ukhlov, Alexander [2 ]
机构
[1] HSE Univ, Dept Math, Moscow, Russia
[2] Ben Gurion Univ Negev, Dept Math, POB 653, IL-8410501 Beer Sheva, Israel
关键词
Sobolev spaces; Composition operators; Metric measure spaces; QUASI-CONFORMAL MAPPINGS; GEOMETRIC-PROPERTIES; NEUMANN PROBLEM; VALUES; MINIMIZERS; EXTENSION; VARIABLES;
D O I
10.1016/j.jmaa.2025.129716
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study homeomorphisms phi : Omega -> (Omega) over tilde that generate embedding operators in Sobolev classes on metric measure spaces X by the composition rule phi*(f ) = f degrees phi. In turn, this leads to Sobolev type embedding theorems for a wide class of domains (Omega) over tilde subset of X. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:23
相关论文
共 53 条
[1]   A GENERAL CHAIN RULE FOR DISTRIBUTIONAL DERIVATIVES [J].
AMBROSIO, L ;
DALMASO, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (03) :691-702
[2]  
Bjorn A., 2011, EMS TRACTS MATH, V17, DOI DOI 10.4171/099
[3]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[4]   Conformal spectral stability estimates for the Neumann Laplacian [J].
Burenkov, V. I. ;
Gol'dshtein, V. ;
Ukhlov, A. .
MATHEMATISCHE NACHRICHTEN, 2016, 289 (17-18) :2133-2146
[5]   Conformal spectral stability estimates for the Dirichlet Laplacian [J].
Burenkov, V. I. ;
Gol'dshtein, V. ;
Ukhlov, A. .
MATHEMATISCHE NACHRICHTEN, 2015, 288 (16) :1822-1833
[6]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[7]  
Choquet G., 1954, Ann. LInstitut Fourier, V5, P131, DOI [10.5802/aif.53, DOI 10.5802/AIF.53]
[8]   The Neumann problem for Sub-Laplacians on Carnot groups and the extension theorem for Sobolev spaces [J].
Duy-Minh Nhieu .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2001, 180 (01) :1-25
[9]  
Folland G. B., 1982, MATH NOTES, V28
[10]   NONEXISTENCE OF VARIATIONAL MINIMIZERS RELATED TO A QUASILINEAR SINGULAR PROBLEM IN METRIC MEASURE SPACES [J].
Garain, Prashanta ;
Kinnunen, Juha .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (08) :3407-3416