Probabilistic Deep Learning for Highly Multivariate Spatio-Temporal Log-Gaussian Cox Processes

被引:0
作者
Choiruddin, Achmad [1 ]
Sakti, Ekky Rino Fajar [1 ]
Widhianingsih, Tintrim Dwi Ary [1 ]
Mateu, Jorge [1 ,2 ]
Fithriasari, Kartika [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Stat, Surabaya 60111, Indonesia
[2] Jaume I Univ, Dept Math, Castellon De La Plana 12006, Spain
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Deep learning; Vegetation; Biological system modeling; Soil; Probabilistic logic; Correlation; Computational modeling; Neural networks; Data models; Surface soil; Big data; deep learning; LGCP; multivariate point pattern; neural network;
D O I
10.1109/ACCESS.2025.3570476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multivariate spatio-temporal point patterns have become increasingly common due to the advancement of technology for massive data collection. Parameter estimation is vital for understanding the distributional patterns within such data. However, performing estimation using a parametric approach on multivariate spatio-temporal point pattern data is challenging due to the curse of dimensionality, making parametric estimation increasingly difficult as data dimensionality grows. Deep learning offers a promising alternative due to its ability to model complex nonlinear patterns in large datasets. Despite limited applications in multivariate point pattern analysis, this study aims to introduce deep learning as a tool for parameter estimation of the multivariate spatio-temporal log-Gaussian Cox Process (LGCP) model. We employ the concept of probabilistic deep learning, ensuring that each estimated parameter follows a certain distribution that aligns with its assumption. We assess our model performance via a simulation study, and analyze the highly multivariate spatio-temporal point pattern data of Barro Colorado Island (BCI). Both the simulation study and application demonstrate our model effectiveness over previous approaches to handle highly multivariate point pattern data.
引用
收藏
页码:94761 / 94776
页数:16
相关论文
共 21 条
[1]  
[Anonymous], 1983, Tropical rain forest: Ecology and management
[2]  
Baddeley A, 2016, CHAP HALL CRC INTERD, P1
[3]   Efficient Seismic Data Denoising via Deep Learning With Improved MCA-SCUNet [J].
Chen, Jinxin ;
Chen, Guoxin ;
Li, Jun ;
Du, Rongsen ;
Qi, Yuli ;
Li, ChunFeng ;
Wang, Naijian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-14
[4]   Adaptive lasso and Dantzig selector for spatial point processes intensity estimation [J].
Choiruddin, Achmad ;
Coeurjolly, Jean-Francois ;
Letue, Frederique .
BERNOULLI, 2023, 29 (03) :1849-1876
[5]   Information criteria for inhomogeneous spatial point processes [J].
Choiruddin, Achmad ;
Coeurjolly, Jean-Francois ;
Waagepetersen, Rasmus .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (01) :119-143
[6]   Regularized estimation for highly multivariate log Gaussian Cox processes [J].
Choiruddin, Achmad ;
Cuevas-Pacheco, Francisco ;
Coeurjolly, Jean-Francois ;
Waagepetersen, Rasmus .
STATISTICS AND COMPUTING, 2020, 30 (03) :649-662
[7]   Quasi-likelihood for multivariate spatial point processes with semiparametric intensity functions [J].
Chu, Tingjin ;
Guan, Yongtao ;
Waagepetersen, Rasmus ;
Xu, Ganggang .
SPATIAL STATISTICS, 2022, 50
[8]  
Diggle P. J., 2013, Statistical Analysis of Spatial and Spatiotemporal Point Patterns, V3rd ed., DOI DOI 10.1201/B15326
[9]   Crime risk assessment through Cox and self-exciting spatio-temporal point processes [J].
Escudero, Isabel ;
Angulo, Jose M. ;
Mateu, Jorge ;
Choiruddin, Achmad .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2025, 39 (01) :181-203
[10]   Inhomogeneous log-Gaussian Cox processes with piecewise constant covariates: a case study in modeling of COVID-19 transmission risk in East Java']Java [J].
Fadlurohman, Alwan ;
Choiruddin, Achmad ;
Mateu, Jorge .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2024, 38 (07) :2891-2901