Stabilization of second-order bilinear systems with time delay by a class of bounded feedbacks

被引:0
作者
El Kazoui, Khalil [1 ]
Ezzaki, Hassan [1 ,2 ]
机构
[1] Ibn Zohr Univ, Fac Sci, Dept Math, LAMA Lab, Agadir 80000, Morocco
[2] Ibn Zohr Univ, Fac Sci, Dept Math, LRST Lab, Agadir 80000, Morocco
来源
CONTROL THEORY AND TECHNOLOGY | 2025年
关键词
Second-order systems; Bilinear systems; Time delay; Strong stabilization; Exponential stabilization; Wave equation; Beam equation; EVOLUTION-EQUATIONS; UNBOUNDED FEEDBACK; STABILITY; RESPECT; ROBUSTNESS;
D O I
10.1007/s11768-025-00258-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The stabilization problem of second-order bilinear systems with time delay is investigated. Feedback controls are chosen so that the strong and exponential stabilization of the system is ensured. The obtained results are illustrated by wave and beam equations with simulation.
引用
收藏
页数:11
相关论文
共 30 条
[1]   Stabilization of second order evolution equations by a class of unbounded feedbacks [J].
Ammari, K ;
Tucsnak, M .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2001, 6 (14) :361-386
[2]  
Angeles J, 2011, MECH ENG SER, P1, DOI 10.1007/978-1-4419-1027-1
[3]   NON-HARMONIC FOURIER-SERIES AND THE STABILIZATION OF DISTRIBUTED SEMI-LINEAR CONTROL-SYSTEMS [J].
BALL, JM ;
SLEMROD, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (04) :555-586
[4]  
Bartoszewicz A, 2009, LECT NOTES CONTR INF, V382, P1
[5]   Rational energy decay rate for the wave equation with delay term on the dynamical control [J].
Bayili, Gilbert ;
Nicaise, Serge ;
Silga, Roland .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (01)
[6]   Same decay rate of second order evolution equations with or without delay [J].
Bayili, Gilbert ;
Ben Aissa, Akram ;
Nicaise, Serge .
SYSTEMS & CONTROL LETTERS, 2020, 141
[7]   Stabilization of beams with nonlinear feedback [J].
Berrahmoune, L .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (04) :1166-1193
[8]  
Berrahmoune L., 1999, Rendiconti del Circolo Matematico di Palermo, V48, P111, DOI [10.1007/BF02844383, DOI 10.1007/BF02844383]
[9]  
Berrahmoune L., 2000, Rendiconti del Circolo Matematico di Palermo, V49, P575, DOI [10.1007/BF02904267, DOI 10.1007/BF02904267]
[10]   Feedback stabilization for a class of distributed semilinear control systems [J].
Bounit, H ;
Hammouri, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (08) :953-969