DEEP LEARNING-BASED LEFT HEART CHAMBERS SEGMENTATION AND STRAIN ANALYSIS FROM DYNAMIC MRI IMAGES

被引:0
作者
Leite, Jonas [1 ]
Gueda, Moussa [1 ]
Bollache, Emilie [1 ]
Bouazizi, Khaoula [1 ,2 ]
Marsac, Perrine [1 ]
Wallet, Thomas [1 ]
Prigent, Mikael [2 ]
Nguyen, Vincent [1 ]
Lamy, Jerome [1 ,3 ]
Gallo, Antonio [1 ]
Mousseaux, Elie [3 ]
Redheuil, Alban [1 ,2 ]
Montalescot, Gilles [4 ]
Dietenbeck, Thomas [1 ]
Kachenoura, Nadjia [1 ]
机构
[1] Sorbonne Univ, CNRS, Lab Imagerie Biomed LIB, INSERM, Paris, France
[2] Inst Cardiometab & Nutr ICAN, Paris, France
[3] Hop Europeen Georges Pompidou, Paris, France
[4] Sorbonne Univ, Pitie Salpetriere Hosp, AP HP, ACTION Grp, Paris, France
来源
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024 | 2024年
基金
欧盟地平线“2020”;
关键词
Deep learning; longitudinal strain; feature tracking; MRI;
D O I
10.1109/ISBI56570.2024.10635336
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature tracking (FT) is increasingly used on dynamic magnetic resonance images for myocardial strain evaluation, but often requires manual initialization of heart chambers, which is tedious and source of variability, especially on the challenging long axis images. Accordingly, we combined a deep learning (DL) approach with FT (DL-FT) to provide fully automated time-resolved left ventricular (LV) and atrial (LA) delineation and strain analysis. This approach was tested on a multi-center and multi-vendor database of 684 healthy controls and patients. DL-initialization achieved Dice scores of 0.89 +/- 0.11 for LV endocardium, 0.93 +/- 0.07 for LV epicardium and 0.89 +/- 0.10 for LA on the testing set of 108 datasets (2-and 4-chambers). LA and LV DL-FT strain peaks were highly associated with expert strains as revealed by correlation coefficients=0.96 for LV and >= 0.70 for LA and mean Bland-Altman biases=0.62% for LV and <1% for LA. Results also revealed stability of our approach over vendors and field strengths.
引用
收藏
页数:4
相关论文
共 14 条
[1]   Generalizable fully automated multi-label segmentation of four-chamber view echocardiograms based on deep convolutional adversarial networks [J].
Arafati, Arghavan ;
Morisawa, Daisuke ;
Avendi, Michael R. ;
Amini, M. Reza ;
Assadi, Ramin A. ;
Jafarkhani, Hamid ;
Kheradvar, Arash .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2020, 17 (169)
[2]  
Bai W., 2018, ARXIV
[3]  
Chalana V., 1997, IEEE TRANS MED IMAGI, V16, P642
[4]   Left atrial aging: a cardiac magnetic resonance feature-tracking study [J].
Evin, Morgane ;
Redheuil, Alban ;
Soulat, Gilles ;
Perdrix, Ludivine ;
Ashrafpoor, Golmehr ;
Giron, Alain ;
Lamy, Jerome ;
Defrance, Carine ;
Roux, Charles ;
Hatem, Stephane N. ;
Diebold, Benoit ;
Mousseaux, Elie ;
Kachenoura, Nadjia .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2016, 310 (05) :H542-H549
[5]   Automatic segmentation of the left ventricle in echocardiographic images using convolutional neural networks [J].
Kim, Taeouk ;
Hedayat, Mohammadali ;
Vaitkus, Veronica V. ;
Belohlavek, Marek ;
Krishnamurthy, Vinayak ;
Borazjani, Iman .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (05) :1763-1781
[6]   Scan-rescan reproducibility of ventricular and atrial MRI feature tracking strain [J].
Lamy, Jerome ;
Soulat, Gilles ;
Evin, Morgane ;
Huber, Adrian ;
de Cesare, Alain ;
Giron, Alain ;
Diebold, Benoit ;
Redheuil, Alban ;
Mousseaux, Elie ;
Kachenoura, Nadjia .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 92 :197-203
[7]   Cardiac substructure segmentation with deep learning for improved cardiac sparing [J].
Morris, Eric D. ;
Ghanem, Ahmed I. ;
Dong, Ming ;
Pantelic, Milan V. ;
Walker, Eleanor M. ;
Glide-Hurst, Carri K. .
MEDICAL PHYSICS, 2020, 47 (02) :576-586
[8]   Cardiovascular Magnetic Resonance Myocardial Feature Tracking: Concepts and Clinical Applications [J].
Schuster, Andreas ;
Hor, Kan N. ;
Kowallick, Johannes T. ;
Beerbaum, Philipp ;
Kutty, Shelby .
CIRCULATION-CARDIOVASCULAR IMAGING, 2016, 9 (04)
[9]   Deep Residual Learning for Image Recognition: A Survey [J].
Shafiq, Muhammad ;
Gu, Zhaoquan .
APPLIED SCIENCES-BASEL, 2022, 12 (18)
[10]   Fully-automatic left ventricular segmentation from long-axis cardiac cine MR scans [J].
Shahzad, Rahil ;
Tao, Qian ;
Dzyubachyk, Oleh ;
Staring, Marius ;
Lelieveldt, Boudewijn P. F. ;
van der Geest, Rob J. .
MEDICAL IMAGE ANALYSIS, 2017, 39 :44-55