Semantic Bridging and Feature Anchoring for Class Incremental Learning

被引:0
作者
Wu, Kanghui [1 ]
Guo, Dongyan [1 ]
机构
[1] Zhejiang Univ Technol, Hangzhou, Peoples R China
来源
2024 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Knowledge Bridging; Category Anchoring; Class Incremental Learning; catastrophic forgetting;
D O I
10.1109/ICME57554.2024.10687878
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of class-incremental learning is to continually assimilate new classes and preserving the knowledge of learned classes. An important issue is that the learned knowledge would be catastrophically forgotten while the model updated to adapting to new classes. In this paper, we introduce two strategies, Knowledge Bridging and Category Anchoring, to balance the old and new classes. Knowledge Bridging aims to build the semantic correlation of old and new classes, which uses feature-level distillation to apply learned knowledge to new information. Category Anchoring focuses on learning class-specific feature centers that are crucial for distinctively categorizing all classes. Finally, we incorporate the proposed strategies with six prominent classincremental learning approaches and conduct comprehensive experiments on the CIFAR100 and ImageNetSubset datasets. The results demonstrate that the proposed strategies are helpful to enhancing performance in Class-Incremental Learning (CIL) tasks.
引用
收藏
页数:6
相关论文
共 16 条
[1]   Conditional Channel Gated Networks for Task-Aware Continual Learning [J].
Abati, Davide ;
Tomczak, Jakub ;
Blankevoort, Tijmen ;
Calderara, Simone ;
Cucchiara, Rita ;
Bejnordi, Babak Ehteshami .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :3930-3939
[2]  
Chen X, 2023, P IEEE CVF INT C COM
[3]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[4]  
Douillard Arthur, 2020, P EUR C COMP VIS
[5]  
Douillard Arthur, 2022, P IEEE CVF C COMP VI
[6]   Learning a Unified Classifier Incrementally via Rebalancing [J].
Hou, Saihui ;
Pan, Xinyu ;
Loy, Chen Change ;
Wang, Zilei ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :831-839
[7]  
Hu Z., 2023, P IEEE CVF C COMP VI, p11 858
[8]  
Kim Dongwan, 2023, P IEEE CVF C COMP VI
[9]  
Krizhevsky A., 2009, Technical report
[10]  
McCloskey M., 1989, Psychology of learning and motivation, V24, P109, DOI [DOI 10.1016/S0079-7421(08)60536-8, 10.1016/S0079-7421(08)60536-8]