Machine learning applications in cardiac computed tomography: a composite systematic review

被引:6
作者
Bray, Jonathan James Hyett [1 ,2 ]
Hanif, Moghees Ahmad [2 ]
Alradhawi, Mohammad [3 ]
Ibbetson, Jacob [2 ]
Dosanjh, Surinder Singh [3 ]
Smith, Sabrina Lucy [4 ]
Ahmad, Mahmood [2 ,3 ]
Pimenta, Dominic [5 ]
机构
[1] Swansea Univ, Med Sch, Inst Life Sci 2, Swansea, Wales
[2] Royal Free Hosp, Royal Free London NHS Fdn Trust, Cardiol Dept, London, England
[3] Univ Coll Hosp, Med Sch, London WC1E 6DE, England
[4] Barts & London Queen Marys Sch Med & Dent, London E1 2AD, England
[5] Univ London, St Georges Hosp, Richmond Res Inst, London SW17 0RE, England
来源
EUROPEAN HEART JOURNAL OPEN | 2022年 / 2卷 / 02期
关键词
Machine learning; Artificial intelligence; Cardiac computed tomography; CORONARY-ARTERY-DISEASE; FRACTIONAL FLOW RESERVE; CT ANGIOGRAPHY; DIAGNOSTIC PERFORMANCE; CARDIOVASCULAR-DISEASE; EPICARDIAL FAT; CALCIUM; PREDICTION; SEGMENTATION; RISK;
D O I
10.1093/ehjopen/oeac018
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence and machine learning (ML) models are rapidly being applied to the analysis of cardiac computed tomography (CT). We sought to provide an overview of the contemporary advances brought about by the combination of ML and cardiac CT. Six searches were performed in Medline, Embase, and the Cochrane Library up to November 2021 for (i) CT-fractional flow reserve (CT-FFR), (ii) atrial fibrillation (AF), (iii) aortic stenosis, (iv) plaque characterization, (v) fat quantification, and (vi) coronary artery calcium score. We included 57 studies pertaining to the aforementioned topics. Non-invasive CT-FFR can accurately be estimated using ML algorithms and has the potential to reduce the requirement for invasive angiography. Coronary artery calcification and non-calcified coronary lesions can now be automatically and accurately calculated. Epicardial adipose tissue can also be automatically, accurately, and rapidly quantified. Effective ML algorithms have been developed to streamline and optimize the safety of aortic annular measurements to facilitate pre-transcatheter aortic valve replacement valve selection. Within electrophysiology, the left atrium (LA) can be segmented and resultant LA volumes have contributed to accurate predictions of post-ablation recurrence of AF. In this review, we discuss the latest studies and evolving techniques of ML and cardiac CT.
引用
收藏
页数:14
相关论文
共 74 条
[1]   Artificial Intelligence Trumps TAVI2-SCORE and CoreValve Score in Predicting 1-Year Mortality Post-Transcatheter Aortic Valve Replacement [J].
Agasthi, Pradyumna ;
Ashraf, Hasan ;
Pujari, Sai Harika ;
Girardo, Marlene E. ;
Tseng, Andrew ;
Mookadam, Farouk ;
Venepally, Nithin R. ;
Buras, Matthew ;
Khetarpal, Banveet K. ;
Allam, Mohamed ;
Eleid, Mackram F. ;
Greason, Kevin L. ;
Beohar, Nirat ;
Siegel, Robert J. ;
Sweeney, John ;
Fortuin, Floyd D. ;
Holmes, David R. ;
Arsanjani, Reza .
CARDIOVASCULAR REVASCULARIZATION MEDICINE, 2021, 24 :33-41
[2]   Automatic aortic valve landmark localization in coronary CT angiography using colonial walk [J].
Al, Walid Abdullah ;
Jung, Ho Yub ;
Yun, Il Dong ;
Jang, Yeonggul ;
Park, Hyung-Bok ;
Chang, Hyuk-Jae .
PLOS ONE, 2018, 13 (07)
[3]   A Boosted Ensemble Algorithm for Determination of Plaque Stability in High-Risk Patients on Coronary CTA [J].
Al'Aref, Subhi J. ;
Singh, Gurpreet ;
Choi, Jeong W. ;
Xu, Zhuoran ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Lee, Benjamin C. ;
Fatima, Zahra ;
Andreini, Daniele ;
Bax, Jeroen J. ;
Cademartiri, Filippo ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Conte, Edoardo ;
Cury, Ricardo C. ;
Feuchtner, Gudruf ;
Hadamitzky, Martin ;
Kim, Yong-Jin ;
Lee, Sang-Eun ;
Leipsic, Jonathon A. ;
Maffei, Erica ;
Marques, Hugo ;
Plank, Fabian ;
Pontone, Gianluca ;
Raff, Gilbert L. ;
Villines, Todd C. ;
Weirich, Harald G. ;
Cho, Iksung ;
Danad, Ibrahim ;
Han, Donghee ;
Heo, Ran ;
Lee, Ji Hyun ;
Rizvi, Asim ;
Stuijfzand, Wijnand J. ;
Gransar, Heidi ;
Lu, Yao ;
Sung, Ji Min ;
Park, Hyung-Bok ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Samady, Habib ;
Stone, Peter H. ;
Virmani, Renu ;
Narula, Jagat ;
Chang, Hyuk-Jae ;
Lin, Fay Y. ;
Baskaran, Lohendran ;
Shaw, Leslee J. ;
Min, James K. .
JACC-CARDIOVASCULAR IMAGING, 2020, 13 (10) :2162-2173
[4]   Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry [J].
Al'Arefilb, Subhi J. ;
Maliakal, Gabriel ;
Singh, Gurpreet ;
van Rosendael, Alexander R. ;
Ma, Xiaoyue ;
Xu, Zhuoran ;
Alawamlh, Omar Al Hussein ;
Lee, Benjamin ;
Pandey, Mohit ;
Achenbach, Stephan ;
Al-Mallah, Mouaz H. ;
Andreini, Daniele ;
Bax, Jeroen J. ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Cademartiri, Filippo ;
Canister, Tracy Q. ;
Chang, Hyuk-Jae ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Cury, Ricardo C. ;
DeLago, Augustin ;
Feuchtner, Gudrun ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Kaufmann, Philipp A. ;
Kim, Yong-Jin ;
Leipsic, Jonathon A. ;
Maffei, Erica ;
Marques, Hugo ;
Goncalves, Pedro de Araujo ;
Pontone, Gianluca ;
Raff, Gilbert L. ;
Rubinshtein, Ronen ;
Villines, Todd C. ;
Gransar, Heidi ;
Lu, Yao ;
Jones, Erica C. ;
Pena, Jessica M. ;
Lin, Fay Y. ;
Min, James K. ;
Shaw, Leslee J. .
EUROPEAN HEART JOURNAL, 2020, 41 (03) :359-367
[5]  
AlAref S, 2017, CLIN CARDIOL, V40, P8
[6]   Dual-energy CT of the heart current and future status [J].
Albrecht, Moritz H. ;
De Cecco, Carlo N. ;
Schoepf, U. Joseph ;
Spandorfer, Adam ;
Eid, Marwen ;
De Santis, Domenico ;
Varga-Szemes, Akos ;
van Assen, Marly ;
von Knebel-Doeberitz, Philipp L. ;
Tesche, Christian ;
Puntmann, Valentina O. ;
Nagel, Eike ;
Vogl, Thomas J. ;
Nance, John W. .
EUROPEAN JOURNAL OF RADIOLOGY, 2018, 105 :110-118
[7]   Enabling Automated Device Size Selection for Transcatheter Aortic Valve Implantation [J].
Astudillo, Patricio ;
Mortier, Peter ;
Bosmans, Johan ;
De Backer, Ole ;
de Jaegere, Peter ;
De Beule, Matthieu ;
Dambre, Joni .
JOURNAL OF INTERVENTIONAL CARDIOLOGY, 2019, 2019
[8]   A new machine learning approach for predicting likelihood of recurrence following ablation for atrial fibrillation from CT [J].
Atta-Fosu, Thomas ;
LaBarbera, Michael ;
Ghose, Soumya ;
Schoenhagen, Paul ;
Saliba, Walid ;
Tchou, Patrick J. ;
Lindsay, Bruce D. ;
Desai, Milind Y. ;
Kwon, Deborah ;
Chung, Mina K. ;
Madabhushi, Anant .
BMC MEDICAL IMAGING, 2021, 21 (01)
[9]   Correlation of machine learning computed tomography-based fractional flow reserve with instantaneous wave free ratio to detect hemodynamically significant coronary stenosis [J].
Baumann, Stefan ;
Hirt, Markus ;
Schoepf, U. Joseph ;
Rutsch, Marlon ;
Tesche, Christian ;
Renker, Matthias ;
Golden, Joseph W. ;
Buss, Sebastian J. ;
Becher, Tobias ;
Bojara, Waldemar ;
Weiss, Christel ;
Papavassiliu, Theano ;
Akin, Ibrahim ;
Borggrefe, Martin ;
Schoenberg, Stefan O. ;
Haubenreisser, Holger ;
Overhoff, Daniel ;
Lossnitzer, Dirk .
CLINICAL RESEARCH IN CARDIOLOGY, 2020, 109 (06) :735-745
[10]   Left Atrial Volume as a Biomarker of Atrial Fibrillation at Routine Chest CT: Deep Learning Approach [J].
Bratt, Alex ;
Guenther, Zachary ;
Hahn, Lewis D. ;
Kadoch, Michael ;
Adams, Patrick L. ;
Leung, Ann N. C. ;
Guo, Haiwei H. .
RADIOLOGY-CARDIOTHORACIC IMAGING, 2019, 1 (05)