Structure-Preserving Transformers for Sequences of SPD Matrices

被引:0
作者
Seraphim, Mathieu [1 ]
Lechervy, Alexis [1 ]
Yger, Florian [2 ]
Brun, Luc [1 ]
Etard, Olivier [3 ]
机构
[1] Normandie Univ, UNICAEN, ENSICAEN, CNRS,GREYC, F-14000 Caen, France
[2] PSL Univ Paris Dauphine, CNRS, LAMSADE, F-75016 Paris, France
[3] Normandie Univ, UNICAEN, CHU Caen, INSERM,COMETE,CYCERON, F-14000 Caen, France
来源
32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024 | 2024年
关键词
Transformers; SPD Matrices; Structure-Preserving; Electroencephalography; Sleep Staging; MANIFOLD; SLEEP;
D O I
10.23919/EUSIPCO63174.2024.10715089
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In recent years, Transformer-based auto-attention mechanisms have been successfully applied to the analysis of a variety of context-reliant data types, from texts to images and beyond, including data from non-Euclidean geometries. In this paper, we present such a mechanism, designed to classify sequences of Symmetric Positive Definite matrices while preserving their Riemannian geometry throughout the analysis. We apply our method to automatic sleep staging on timeseries of EEG-derived covariance matrices from a standard dataset, obtaining high levels of stage-wise performance.
引用
收藏
页码:1451 / 1455
页数:5
相关论文
共 29 条
[1]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[2]   Log-euclidean metrics for fast and simple calculus on diffusion tensors [J].
Arsigny, Vincent ;
Fillard, Pierre ;
Pennec, Xavier ;
Ayache, Nicholas .
MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (02) :411-421
[3]   AASM Scoring Manual Updates for 2017 (Version 2.4) [J].
Berry, Richard B. ;
Brooks, Rita ;
Gamaldo, Charlene ;
Harding, Susan M. ;
Lloyd, Robin M. ;
Quan, Stuart F. ;
Troester, Matthew T. ;
Vaughn, Bradley V. .
JOURNAL OF CLINICAL SLEEP MEDICINE, 2017, 13 (05) :665-666
[4]   ManifoldNet: A Deep Neural Network for Manifold-Valued Data With Applications [J].
Chakraborty, Rudrasis ;
Bouza, Jose ;
Manton, Jonathan ;
Vemuri, Baba C. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (02) :799-810
[5]   Automatic Sleep Stage Classification on EEG Signals Using Time-Frequency Representation [J].
Dequidt, Paul ;
Seraphim, Mathieu ;
Lechervy, Alexis ;
Gaez, Ivan Igor ;
Brun, Luc ;
Etard, Olivier .
ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2023, 2023, 13897 :250-259
[6]  
Eickhoff SB., 2015, BRAIN MAPPING, P187, DOI DOI 10.1016/B978-0-12-397025-1.00212-8
[7]   RobustSleepNet: Transfer Learning for Automated Sleep Staging at Scale [J].
Guillot, Antoine ;
Thorey, Valentin .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 :1441-1451
[8]   Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES) [J].
Hansen, N ;
Muller, SD ;
Koumoutsakos, P .
EVOLUTIONARY COMPUTATION, 2003, 11 (01) :1-18
[9]  
Harandi MT, 2014, LECT NOTES COMPUT SC, V8690, P17, DOI 10.1007/978-3-319-10605-2_2
[10]  
He L, 2021, Advances in Neural Information Processing Systems, P343