Distributed edge computing for appearance-based gait recognition

被引:1
作者
Conchari, Christian [1 ]
Sahonero-Alvarez, Guillermo [1 ,2 ,3 ]
Mollocuaquira, Raul [1 ]
Salazar, Edgar [1 ,4 ]
机构
[1] Univ Catolica Boliviana, CIDIMEC, La Paz, Bolivia
[2] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Santiago, Chile
[3] Millennium Sci Initiat Intelligent Healthcare Eng, Santiago, Chile
[4] Univ Privada Boliviana, Dept Ingn & Arquitectura, La Paz, Bolivia
来源
2024 IEEE ANDESCON | 2024年
关键词
Gait recognition; edge computing; computer vision; deep learning; CHALLENGES;
D O I
10.1109/ANDESCON61840.2024.10755607
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The expansion of smart cities requires the integration of advanced security technologies, including gait recognition, which is increasingly valued for enhancing urban surveillance. This paper introduces a novel distributed edge computing framework specifically designed for appearance-based real-time gait recognition, utilizing deep learning techniques to ensure efficient and accurate analysis. The framework leverages a distributed architecture that minimizes latency and distributes computational loads across multiple devices, effectively balancing processing demands. We also introduce the OAKGait16 dataset, which comprises video sequences of various individuals from multiple view angles and in different clothing variants, providing a robust basis for comprehensive analysis. Our evaluations demonstrate that our approach not only achieves high efficiency and accuracy in controlled settings-but also keeps the processing speed at 29 frames per second, showcasing its potential for real-world application in smart city security systems. This work establishes a foundational framework intended to guide further advancements in practical, scalable gait recognition systems.
引用
收藏
页数:6
相关论文
共 22 条
[1]   Person identification from partial gait cycle using fully convolutional neural networks [J].
Babaee, Maryam ;
Li, Linwei ;
Rigoll, Gerhard .
NEUROCOMPUTING, 2019, 338 :116-125
[2]   Deep Learning With Edge Computing: A Review [J].
Chen, Jiasi ;
Ran, Xukan .
PROCEEDINGS OF THE IEEE, 2019, 107 (08) :1655-1674
[3]   Smart Video Surveillance System Based on Edge Computing [J].
Cob-Parro, Antonio Carlos ;
Losada-Gutierrez, Cristina ;
Marron-Romera, Marta ;
Gardel-Vicente, Alfredo ;
Bravo-Munoz, Ignacio .
SENSORS, 2021, 21 (09)
[4]  
Howard AG, 2017, Arxiv, DOI arXiv:1704.04861
[5]   Individual recognition using Gait Energy Image [J].
Han, J ;
Bhanu, B .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (02) :316-322
[6]   iSEC: An Optimized Deep Learning Model for Image Classification on Edge Computing [J].
Kristiani, Endah ;
Yang, Chao-Tung ;
Huang, Chin-Yin .
IEEE ACCESS, 2020, 8 :27267-27276
[7]   Review of gait recognition approaches and their challenges on view changes [J].
Kusakunniran, Worapan .
IET BIOMETRICS, 2020, 9 (06) :238-250
[8]   Real-Time Human Recognition at Night via Integrated Face and Gait Recognition Technologies [J].
Manssor, Samah A. F. ;
Sun, Shaoyuan ;
Elhassan, Mohammed A. M. .
SENSORS, 2021, 21 (13)
[9]   Gait-CNN-ViT: Multi-Model Gait Recognition with Convolutional Neural Networks and Vision Transformer [J].
Mogan, Jashila Nair ;
Lee, Chin Poo ;
Lim, Kian Ming ;
Ali, Mohammed ;
Alqahtani, Ali .
SENSORS, 2023, 23 (08)
[10]   WALKING PATTERNS OF NORMAL MEN [J].
MURRAY, MP ;
DROUGHT, AB ;
KORY, RC .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1964, 46 (02) :335-360