AMamNet: Attention-Enhanced Mamba Network for Hyperspectral Remote Sensing Image Classification

被引:0
作者
Liu, Chunjiang [1 ]
Wang, Feng [1 ]
Jia, Qinglei [2 ]
Liu, Li [3 ]
Zhang, Tianxiang [3 ]
机构
[1] China Energy Trading Grp Co Ltd, Beijing 100011, Peoples R China
[2] Zhongke Tuxin Suzhou Technol Co Ltd, Suzhou 215163, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
关键词
hyperspectral image; classification; remote sensing; mamba; transformer;
D O I
10.3390/atmos16050541
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hyperspectral imaging, a key technology in remote sensing, captures rich spectral information beyond the visible spectrum, rendering it indispensable for advanced classification tasks. However, with developments in hyperspectral imaging, spatial-spectral redundancy and spectral confusion have increasingly revealed the limitations of convolutional neural networks (CNNs) and vision transformers (ViT). Recent advancements in state space models (SSMs) have demonstrated their superiority in linear modeling compared to convolution and transformer-based approaches. Based on this foundation, this study proposes a model named AMamNet that integrates convolutional and attention mechanisms with SSMs. As a core component of AMamNet, Attention-Bidirectional Mamba Block, leverages the self-attention mechanism to capture inter-spectral dependencies, while SSMs enhance sequential feature extraction, effectively managing the continuous nature of hyperspectral image spectral bands. Technically, a multi-scale convolution stem block is designed to achieve shallow spatial-spectral feature fusion and reduce information redundancy. Extensive experiments conducted on three benchmark datasets, namely the Indian Pines dataset, Pavia University dataset, and WHU-Hi-LongKou dataset, demonstrate that AMamNet achieves robust, state-of-the-art performance, underscoring its effectiveness in mitigating redundancy and confusion within the spatial-spectral characteristics of hyperspectral images.
引用
收藏
页数:24
相关论文
共 48 条
[1]  
Ahmad M, 2024, Arxiv, DOI [arXiv:2408.01224, DOI 10.1080/2150704X.2025.2461330]
[2]   Hyperspectral Image Classification-Traditional to Deep Models: A Survey for Future Prospects [J].
Ahmad, Muhammad ;
Shabbir, Sidrah ;
Roy, Swalpa Kumar ;
Hong, Danfeng ;
Wu, Xin ;
Yao, Jing ;
Khan, Adil Mehmood ;
Mazzara, Manuel ;
Distefano, Salvatore ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :968-999
[3]   A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications [J].
Avci, Onur ;
Abdeljaber, Osama ;
Kiranyaz, Serkan ;
Hussein, Mohammed ;
Gabbouj, Moncef ;
Inman, Daniel J. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 147
[4]   Local Similarity-Based Spatial-Spectral Fusion Hyperspectral Image Classification With Deep CNN and Gabor Filtering [J].
Bhatti, Uzair Aslam ;
Yu, Zhaoyuan ;
Chanussot, Jocelyn ;
Zeeshan, Zeeshan ;
Yuan, Linwang ;
Luo, Wen ;
Nawaz, Saqib Ali ;
Bhatti, Mughair Aslam ;
ul Ain, Qurat ;
Mehmood, Anum .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[5]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[6]   Opportunities and obstacles for deep learning in biology and medicine [J].
Ching, Travers ;
Himmelstein, Daniel S. ;
Beaulieu-Jones, Brett K. ;
Kalinin, Alexandr A. ;
Do, Brian T. ;
Way, Gregory P. ;
Ferrero, Enrico ;
Agapow, Paul-Michael ;
Zietz, Michael ;
Hoffman, Michael M. ;
Xie, Wei ;
Rosen, Gail L. ;
Lengerich, Benjamin J. ;
Israeli, Johnny ;
Lanchantin, Jack ;
Woloszynek, Stephen ;
Carpenter, Anne E. ;
Shrikumar, Avanti ;
Xu, Jinbo ;
Cofer, Evan M. ;
Lavender, Christopher A. ;
Turaga, Srinivas C. ;
Alexandari, Amr M. ;
Lu, Zhiyong ;
Harris, David J. ;
DeCaprio, Dave ;
Qi, Yanjun ;
Kundaje, Anshul ;
Peng, Yifan ;
Wiley, Laura K. ;
Segler, Marwin H. S. ;
Boca, Simina M. ;
Swamidass, S. Joshua ;
Huang, Austin ;
Gitter, Anthony ;
Greene, Casey S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
[7]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[8]  
Erpek T., 2020, DEV ANAL DEEP LEARNI, P223
[9]  
Gu A, 2024, Arxiv, DOI [arXiv:2312.00752, DOI 10.48550/ARXIV.2312.00752]
[10]  
Gu AL, 2022, Arxiv, DOI arXiv:2111.00396