Artificial Intelligence Assisted Residual Strength and Life Prediction of Fiber Reinforced Polymer Composites

被引:1
作者
Das, Partha Pratim [1 ]
Elenchezhian, Muthu [2 ]
Vadlamudi, Vamsee [1 ,3 ]
Raihan, Rassel [1 ,3 ]
机构
[1] Univ Texas Arlington, Mech & Aerosp Engn, Arlington, TX 76019 USA
[2] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, TX 47906 USA
[3] UTA Res Inst, Inst Predict Performance Methodol, Ft Worth, TX USA
来源
AIAA SCITECH 2023 FORUM | 2023年
关键词
SIGNALS; DAMAGE; MODEL;
D O I
10.2514/6.2023-0773
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
With the increased use of composite materials, researchers have developed many approaches for structural and prognostic health monitoring. Broadband Dielectric Spectroscopy (BbDS)/Impedance Spectroscopy (IS) is a state-of-the-art technology that can be used to identify and monitor the minute changes in damage initiation, accumulation, interactions, and the degree of damage in a composite under static and dynamic loading. This work presents a novel artificial neural network (ANN) framework for fiber-reinforced polymer (FRP) composites under fatigue loading, which incorporates dielectric state variables to predict the life (durability) and residual strength ( damage tolerance) from real-time acquired dielectric permittivity of the material. The findings of this study indicate that this robust ANN-based prognostic framework can be implemented in FRP composite structures, thereby assisting in preventing unforeseeable failure.
引用
收藏
页数:12
相关论文
共 25 条
[1]  
[Anonymous], 2015, STANDARD TEST METHOD
[2]  
Banerjee P., 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), DOI 10.23919/URSIAP-RASC.2019.8738628
[3]   Machine learning for composite materials [J].
Chen, Chun-Teh ;
Gu, Grace X. .
MRS COMMUNICATIONS, 2019, 9 (02) :556-566
[4]   Moisture Content Prediction in Polymer Composites Using Machine Learning Techniques [J].
Das, Partha Pratim ;
Rabby, Monjur Morshed ;
Vadlamudi, Vamsee ;
Raihan, Rassel .
POLYMERS, 2022, 14 (20)
[5]   Classifying Induced Damage in Composite Plates Using One-Class Support Vector Machines [J].
Das, Santanu ;
Chattopadhyay, Aditi ;
Srivastava, Ashok N. .
AIAA JOURNAL, 2010, 48 (04) :705-718
[6]   Damage detection of a hybrid composite laminate aluminum/glass under quasi-static and fatigue loadings by acoustic emission technique [J].
Dia, Abdou ;
Dieng, Lamine ;
Gaillet, Laurent ;
Gning, Papa Birame .
HELIYON, 2019, 5 (03)
[7]   Unsupervised clustering for building a learning database of acoustic emission signals to identify damage mechanisms in unidirectional laminates [J].
Ech-Choudany, Y. ;
Assarar, M. ;
Scida, D. ;
Morain-Nicolier, F. ;
Bellach, B. .
APPLIED ACOUSTICS, 2017, 123 :123-132
[8]  
Elenchezhian M. R. P., 2020, P AM SOC COMP 35 TEC, P839, DOI [10.12783/ASC35/34900, DOI 10.12783/ASC35/34900]
[9]  
Elenchezhian MRP, 2019, AIAA SCITECH 2019 FORUM
[10]   Stiffness degradation in fatigue life of composites using dielectric state variables [J].
Elenchezhian, Muthu Ram Prabhu ;
Das, Partha Pratim ;
Rahman, Minhazur ;
Vadlamudi, Vamsee ;
Raihan, Rassel ;
Reifsnider, Kenneth .
COMPOSITE STRUCTURES, 2021, 273