NEW NMDS SELF-DUAL CODES OVER FINITE FIELDS

被引:0
作者
Lebed, Khawla [1 ]
Zheng, Dabin [1 ]
Liu, Hongwei [2 ]
机构
[1] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-dual code; Near MDS code; Zero-sum; MDS CODES;
D O I
10.3934/amc.2025030
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
. Self-dual codes and near-MDS (NMDS) codes are special families of classical codes, and they hold significant importance in both coding theory and its practical applications. As a result, it is of interest to study NMDS self-dual codes. This paper constructs some new classes of NMDS self-dual codes based on a specific zero-sum condition. For finite fields with odd characteristic, our work can produce more classes of NMDS self-dual codes with new parameters.
引用
收藏
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 1995, P 4 IMA C CRYPT COD
[2]  
Cadambe VR, 2011, IEEE INT SYMP INFO, P1225, DOI 10.1109/ISIT.2011.6033730
[3]   On codes, matroids, and secure multiparty computation from linear secret-sharing schemes [J].
Cramer, Ronald ;
Daza, Vanesa ;
Gracia, Ignacio ;
Urroz, Jorge Jimenez ;
Leander, Gregor ;
Marti-Farre, Jaume ;
Padro, Carles .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (06) :2644-2657
[4]   Infinite Families of Near MDS Codes Holding t-Designs [J].
Ding, Cunsheng ;
Tang, Chunming .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) :5419-5428
[5]  
Dodunekov S. M., 1995, J GEOMETRY, V54, P30, DOI DOI 10.1007/BF01222850
[6]   Secret-sharing schemes based on self-dual codes [J].
Dougherty, Steven T. ;
Mesnager, Sihem ;
Sole, Patrick .
2008 IEEE INFORMATION THEORY WORKSHOP, 2008, :338-+
[7]   New MDS self-dual codes over finite fields of odd characteristic [J].
Fang, Xiaolei ;
Lebed, Khawla ;
Liu, Hongwei ;
Luo, Jinquan .
DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (06) :1127-1138
[8]   New MDS or near-MDS self-dual codes [J].
Gulliver, T. Aaron ;
Kim, Jon-Lark ;
Lee, Yoonjin .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) :4354-4360
[9]   Self-Dual Near MDS Codes from Elliptic Curves [J].
Jin, Lingfei ;
Kan, Haibin .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) :2166-2170
[10]   MDS AND NEAR-MDS SELF-DUAL CODES OVER LARGE PRIME FIELDS [J].
Kotsireas, Ilias S. ;
Koukouvinos, Christos ;
Simos, Dimitris E. .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2009, 3 (04) :349-361