Reset-dominant accurate synaptic weight mapping in passive memristor arrays for energy-efficient spiking neural networks

被引:0
作者
Byun, Yongjin [1 ]
Kim, Gimun [1 ]
Kim, Sungjoon [2 ]
Kim, Sungjun [1 ]
机构
[1] Dongguk Univ, Div Elect & Elect Engn, Seoul 04620, South Korea
[2] Korea Univ, Dept AI Semicond Engn, Sejong 30019, South Korea
基金
新加坡国家研究基金会;
关键词
Memristor arrays; Weight transfer; Overshoot suppression; Vector-matrix multiplication; Spiking neural networks;
D O I
10.1016/j.nanoen.2025.111261
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study presents a novel reset-dominant synaptic weight programming strategy for passive memristor crossbar arrays, enabling high-precision neuromorphic computing without external current compliance circuitry. We introduce a naturally formed Overshoot Suppression Layer (OSL) within a Pt/Al/TiOx/Al2O3/Pt device stack, which intrinsically limits overshoot current during the set process and allows for stable analog switching. Combined with a half-bias programming scheme, this structure significantly suppresses cell-to-cell interference, a critical challenge in high-density memristor arrays. To further enhance weight accuracy, we propose the InitialLow Resistance State (LRS) scheme, a reset-dominant programming method that minimizes abrupt conductance variation induced by set pulses. Using an incremental step pulse with verification algorithm (ISPVA), we successfully programmed 20 discrete conductance levels with a mean vector-matrix multiplication (VMM) error of 419.8 nA. Notably, 99 % of the weights fell within a 1.5 mu A error margin, demonstrating the high precision of our approach. System-level validation was conducted through hardware-based inference using a spiking neural network (SNN) trained on the MNIST dataset, achieving a classification accuracy of 88.85 %, only 1.7 % below the ideal software baseline. This work highlights a scalable and CMOS-compatible solution for achieving accurate, energy-efficient VMM in passive memristor arrays, offering strong potential for next-generation neuromorphic hardware.
引用
收藏
页数:13
相关论文
共 46 条
[11]  
Chung P.H., 2024, Adv. Electron Mater., V11
[12]  
Das S., 2015, Rev. Prospect, V115, P0975
[13]   Training Spiking Neural Networks Using Lessons From Deep Learning [J].
Eshraghian, Jason K. ;
Ward, Max ;
Neftci, Emre O. ;
Wang, Xinxin ;
Lenz, Gregor ;
Dwivedi, Girish ;
Bennamoun, Mohammed ;
Jeong, Doo Seok ;
Lu, Wei D. .
PROCEEDINGS OF THE IEEE, 2023, 111 (09) :1016-1054
[14]   Bipolar Nonlinear Ni/TiO2/Ni Selector for 1S1R Crossbar Array Applications [J].
Huang, Jiun-Jia ;
Tseng, Yi-Ming ;
Hsu, Chung-Wei ;
Hou, Tuo-Hung .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (10) :1427-1429
[15]   Forming-free Pt/Al2O3/HfO2/HfAlOx/TiN memristor with controllable multilevel resistive switching and neuromorphic characteristics for artificial synapse [J].
Ismail, Muhammad ;
Mahata, Chandreswar ;
Kim, Sungjun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 892
[16]   Low power Ti-doped NbO2-based selector device with high selectivity and low OFF current [J].
Jeon, Dong Su ;
Dongale, Tukaram D. ;
Kim, Tae Geun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884 (884)
[17]  
Kim J., 2024, ADV FUNCT MATER, V34
[18]   Memristive Architectures Exploiting Self-Compliance Multilevel Implementation on 1 kb Crossbar Arrays for Online and Offline Learning Neuromorphic Applications [J].
Kim, Sungjoon ;
Ji, Hyeonseung ;
Park, Kyungchul ;
So, Hyojin ;
Kim, Hyungjin ;
Kim, Sungjun ;
Choi, Woo Young .
ACS NANO, 2024, 18 (36) :25128-25143
[19]   Overshoot-Suppressed Memristor Array with AlN Oxygen Barrier for Low-Power Operation in the Intelligent Neuromorphic Systems [J].
Kim, Sungjoon ;
Hong, Kyungho ;
Kim, Hyungjin ;
Kim, Min-Hwi ;
Choi, Woo Young .
ADVANCED INTELLIGENT SYSTEMS, 2024, 6 (08)
[20]   4-bit Multilevel Operation in Overshoot Suppressed Al2O3/TiOx Resistive Random-Access Memory Crossbar Array [J].
Kim, Sungjoon ;
Park, Jinwoo ;
Kim, Tae-Hyeon ;
Hong, Kyungho ;
Hwang, Yeongjin ;
Park, Byung-Gook ;
Kim, Hyungjin .
ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (09)