A Framework for High-Spatiotemporal-Resolution Soil Moisture Retrieval in China Using Multi-Source Remote Sensing Data

被引:2
作者
Feng, Zhuangzhuang [1 ,2 ]
Zheng, Xingming [1 ,3 ]
Li, Xiaofeng [1 ,3 ]
Wang, Chunmei [4 ]
Song, Jinfeng [1 ,2 ]
Li, Lei [1 ]
Guo, Tianhao [1 ,2 ]
Zheng, Jia [1 ,2 ]
机构
[1] Chinese Acad Sci, Northeast Inst Geog & Agroecol, State Key Lab Black Soils Conservat & Utilizat, Changchun 130102, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Changchun Jingyuetan Remote Sensing Expt Stn, Changchun 130102, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing; high spatiotemporal resolution; surface soil moisture; machine learning; deep learning; China; WATER-RESOURCES; SURFACE; SMAP; INDEX; SAR;
D O I
10.3390/land13122189
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High-spatiotemporal-resolution and accurate soil moisture (SM) data are crucial for investigating climate, hydrology, and agriculture. Existing SM products do not yet meet the demands for high spatiotemporal resolution. The objective is to develop and evaluate a retrieval framework to derive SM estimates with high spatial (100 m) and temporal (<3 days) resolution that can be used on a national scale in China. Therefore, this study integrates multi-source data, including optical remote sensing (RS) data from Sentinel-2 and Landsat-7/8/9, synthetic aperture radar (SAR) data from Sentinel-1, and auxiliary data. Four machine learning and deep learning algorithms are applied, including Random Forest Regression (RFR), Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM) networks, and Ensemble Learning (EL). The integrated framework (IF) considers three feature scenarios (SC1: optical RS + auxiliary data, SC2: SAR + auxiliary data, SC3: optical RS + SAR + auxiliary data), encompassing a total of 33 features. The results are as follows: (1) The correlation coefficients (r) between auxiliary data (such as sand fraction, r = -0.48; silt fraction, r = 0.47; and evapotranspiration, r = -0.42), SAR features (such as the backscatter coefficients for VV-pol (sigma(0)(vv)), r = 0.47), and optical RS features (such as Shortwave Infrared Band 2 (SWIR2) reflectance data from Sentinel-2 and Landsat-7/8/9, r = -0.39) with observed SM are significant. This indicates that multi-source data can provide complementary information for SM monitoring. (2) Compared to XGBoost and LSTM, RFR and EL demonstrate superior overall performance and are the preferred models for SM prediction. Their R-2 for the training and test sets exceed 0.969 and 0.743, respectively, and their ubRMSE are below 0.022 and 0.063 m(3)/m(3), respectively. (3) The SM prediction accuracy is highest for the scenario of optical + SAR + auxiliary data, followed by SAR + auxiliary data, and finally optical + auxiliary data. (4) With an increasing Normalized Difference Vegetation Index (NDVI) and SM values, the trained models exhibit a general decrease in prediction performance and accuracy. (5) In 2021 and 2022, without considering cloud cover, the IF theoretically achieved an SM revisit time of 1-3 days across 95.01% and 96.53% of China's area, respectively. However, SC1 was able to achieve a revisit time of 1-3 days over 60.73% of China's area in 2021 and 69.36% in 2022, while the area covered by SC2 and SC3 at this revisit time accounted for less than 1% of China's total area. This study validates the effectiveness of combining multi-source RS data with auxiliary data in large-scale SM monitoring and provides new methods for improving SM retrieval accuracy and spatiotemporal coverage.
引用
收藏
页数:21
相关论文
共 63 条
[1]   Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale [J].
Abowarda, Ahmed Samir ;
Bai, Liangliang ;
Zhang, Caijin ;
Long, Di ;
Li, Xueying ;
Huang, Qi ;
Sun, Zhangli .
REMOTE SENSING OF ENVIRONMENT, 2021, 255
[2]   A Joint ESA-NASA Multi-mission Algorithm and Analysis Platform (MAAP) for Biomass, NISAR, and GEDI [J].
Albinet, Clement ;
Whitehurst, Amanda S. ;
Jewell, Laura Alisic ;
Bugbee, Kaylin ;
Laur, Henri ;
Murphy, Kevin J. ;
Frommknecht, Bjorn ;
Scipal, Klaus ;
Costa, Gabriella ;
Jai, Benhan ;
Ramachandran, Rahul ;
Lavalle, Marco ;
Duncanson, Laura .
SURVEYS IN GEOPHYSICS, 2019, 40 (04) :1017-1027
[3]   Estimation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning [J].
Babaeian, Ebrahim ;
Paheding, Sidike ;
Siddique, Nahian ;
Devabhaktuni, Vijay K. ;
Tuller, Markus .
REMOTE SENSING OF ENVIRONMENT, 2021, 260 (260)
[4]   Sentinel-1 soil moisture at 1 km resolution: a validation study [J].
Balenzano, Anna ;
Mattia, Francesco ;
Satalino, Giuseppe ;
Lovergine, Francesco P. ;
Palmisano, Davide ;
Peng, Jian ;
Marzahn, Philip ;
Wegmuller, Urs ;
Cartus, Oliver ;
Dabrowska-Zielinska, Katarzyna ;
Musial, Jan P. ;
Davidson, Malcolm W. J. ;
Pauwels, Valentijn R. N. ;
Cosh, Michael H. ;
McNairn, Heather ;
Johnson, Joel T. ;
Walker, Jeffrey P. ;
Yueh, Simon H. ;
Entekhabi, Dara ;
Kerr, Yann H. ;
Jackson, Thomas J. .
REMOTE SENSING OF ENVIRONMENT, 2021, 263
[5]   The BIOMASS Level 2 Prototype Processor: Design and Experimental Results of Above-Ground Biomass Estimation [J].
Banda, Francesco ;
Giudici, Davide ;
Le Toan, Thuy ;
d'Alessandro, Mauro Mariotti ;
Papathanassiou, Kostas ;
Quegan, Shaun ;
Riembauer, Guido ;
Scipal, Klaus ;
Soja, Maciej ;
Tebaldini, Stefano ;
Ulander, Lars ;
Villard, Ludovic .
REMOTE SENSING, 2020, 12 (06)
[6]   C-band polarimetric indexes for maize monitoring based on a validated radiative transfer model [J].
Blaes, X ;
Defourny, P ;
Wegmüller, U ;
Della Vecchia, A ;
Guerriero, L ;
Ferrazzoli, P .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (04) :791-800
[7]   SEDE-GPS: socio-economic data enrichment based on GPS information [J].
Sperlea, Theodor ;
Fueser, Stefan ;
Boenigk, Jens ;
Heider, Dominik .
BMC BIOINFORMATICS, 2018, 19
[8]   Development and assessment of the SMAP enhanced passive soil moisture product [J].
Chan, S. K. ;
Bindlish, R. ;
O'Neill, P. ;
Jackson, T. ;
Njoku, E. ;
Dunbar, S. ;
Chaubell, J. ;
Piepmeier, J. ;
Yueh, S. ;
Entekhabi, D. ;
Colliander, A. ;
Chen, F. ;
Cosh, M. H. ;
Caldwell, T. ;
Walker, J. ;
Berg, A. ;
McNairn, H. ;
Thibeault, M. ;
Martinez-Fernandez, J. ;
Uldall, F. ;
Seyfried, M. ;
Bosch, D. ;
Starks, P. ;
Collins, C. Holifield ;
Prueger, J. ;
van der Velde, R. ;
Asanuma, J. ;
Palecki, M. ;
Small, E. E. ;
Zreda, M. ;
Calvet, J. ;
Crow, W. T. ;
Kerr, Y. .
REMOTE SENSING OF ENVIRONMENT, 2018, 204 :931-941
[9]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[10]   Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning [J].
Cheng, Minghan ;
Jiao, Xiyun ;
Liu, Yadong ;
Shao, Mingchao ;
Yu, Xun ;
Bai, Yi ;
Wang, Zixu ;
Wang, Siyu ;
Tuohuti, Nuremanguli ;
Liu, Shuaibing ;
Shi, Lei ;
Yin, Dameng ;
Huang, Xiao ;
Nie, Chenwei ;
Jin, Xiuliang .
AGRICULTURAL WATER MANAGEMENT, 2022, 264