Temperature Effects on the Surface CO Population during CO2 Electroreduction over Copper

被引:0
作者
Brandao, Victor D. [1 ]
Song, Hakhyeon [2 ]
Venkataraman, Anush [1 ]
Fishler, Yuval [3 ,4 ]
Arora, Sukaran S. [5 ]
Bhargava, Saket S. [5 ]
Villa, Carlos [5 ]
Holewinski, Adam [3 ,4 ]
Nair, Sankar [1 ]
Hatzell, Marta C. [2 ]
Sievers, Carsten [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[3] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80303 USA
[4] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80303 USA
[5] Dow Chem Co USA, Lake Jackson, TX 77566 USA
关键词
CO2; electroreduction; copper; temperature; spectroelectrochemistry; SEIRAS; CO coverage; CARBON-DIOXIDE REDUCTION; ELECTROCHEMICAL REDUCTION; POLYCRYSTALLINE COPPER; HYDROGEN-EVOLUTION; CU; ELECTRODE; METHANE; HYDROCARBONS; SELECTIVITY; INTERMEDIATE;
D O I
10.1021/acscatal.5c01173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In industrial implementations, CO2 electrolyzers will likely operate at high temperatures due to heat transfer limitations, but the effects of temperature on surface reactions involved in CO2 electroreduction remain elusive and heavily based on inference from product analysis. In this study, we used surface-enhanced infrared absorption spectroscopy (SEIRAS) to deconvolute temperature-dependent phenomena affecting the CO population on copper between 20 and 80 degrees C. We show that CO coverage and migration to defect sites increase between 20 and 45 degrees C and decrease between 45 and 80 degrees C, suggesting that increasing temperature favors a CO hydrogenation route to C-1 products over a CO coupling route to C2+ products. C-1 and C2+ product formation rates have 1.28 and 1.95 order dependence on the concentration of CO on defect sites, respectively, indicating that these are the active sites for product formation between 20 and 80 degrees C. Thus, increasing temperature has a direct effect on the CO conversion route to C-1 and C2+ products beyond just controlling local CO2 availability, mass transport, and elementary reaction rates. These findings provide a deeper understanding of the underlying reaction mechanism at elevated temperatures, which is a key step in rationalizing product distribution and in designing solutions for enhanced C2+ production in CO2 electrolyzers.
引用
收藏
页码:8979 / 8990
页数:12
相关论文
共 79 条
[1]   Electroreduction of CO2 on polycrystalline copper: Effect of temperature on product selectivity [J].
Ahn, Steven T. ;
Abu-Baker, Ismael ;
Palmore, G. Tayhas R. .
CATALYSIS TODAY, 2017, 288 :24-29
[2]   Sub-Second Time-Resolved Surface-Enhanced Raman Spectroscopy Reveals Dynamic CO Intermediates during Electrochemical CO2 Reduction on Copper [J].
An, Hongyu ;
Wu, Longfei ;
Mandemaker, Laurens D. B. ;
Yang, Shuang ;
de Ruiter, Jim ;
Wijten, Jochem H. J. ;
Janssens, Joris C. L. ;
Hartman, Thomas ;
van der Stam, Ward ;
Weckhuysen, Bert M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (30) :16576-16584
[3]   Mechanistic Implications of Low CO Coverage on Cu in the Electrochemical CO and CO2 Reduction Reactions [J].
Chang, Xiaoxia ;
Xiong, Haocheng ;
Lu, Qi ;
Xu, Bingjun .
JACS AU, 2023, 3 (11) :2948-2963
[4]   Structure Sensitivity and Catalyst Restructuring for CO2 Electro-reduction on Copper [J].
Cheng, Dongfang ;
Nguyen, Khanh-Ly C. ;
Sumaria, Vaidish ;
Wei, Ziyang ;
Zhang, Zisheng ;
Gee, Winston ;
Li, Yichen ;
Morales-Guio, Carlos G. ;
Heyde, Markus ;
Roldan Cuenya, Beatriz ;
Alexandrova, Anastassia N. ;
Sautet, Philippe .
NATURE COMMUNICATIONS, 2025, 16 (01)
[5]   Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0 [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (23) :4767-4773
[6]   Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO2 Reduction to Ethylene [J].
Chou, Tsu-Chin ;
Chang, Chiao-Chun ;
Yu, Hung-Ling ;
Yu, Wen-Yueh ;
Dong, Chung-Li ;
Velasco-Velez, Juan Jesus ;
Chuang, Cheng-Hao ;
Chen, Li-Chyong ;
Lee, Jyh-Fu ;
Chen, Jin-Ming ;
Wu, Heng-Liang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (06) :2857-2867
[7]   Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2 [J].
Corral, Daniel ;
Feaster, Jeremy T. ;
Sobhani, Sadaf ;
DeOtte, Joshua R. ;
Lee, Dong Un ;
Wong, Andrew A. ;
Hamilton, Julie ;
Beck, Victor A. ;
Sarkar, Amitava ;
Hahn, Christopher ;
Jaramillo, Thomas F. ;
Baker, Sarah E. ;
Duoss, Eric B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (05) :3064-3074
[8]   Probing the Dynamics of Low-Overpotential CO2-to-CO Activation on Copper Electrodes with Time-Resolved Raman Spectroscopy [J].
de Ruiter, Jim ;
An, Hongyu ;
Wu, Longfei ;
Gijsberg, Zamorano ;
Yang, Shuang ;
Hartman, Thomas ;
Weckhuysen, Bert M. ;
Stam, Ward van der .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (33) :15047-15058
[9]   ELECTROCHEMICAL AND SURFACE STUDIES OF CARBON-DIOXIDE REDUCTION TO METHANE AND ETHYLENE AT COPPER ELECTRODES IN AQUEOUS-SOLUTIONS [J].
DEWULF, DW ;
JIN, T ;
BARD, AJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (06) :1686-1691
[10]   Investigation and Mitigation of Carbon Deposition over Copper Catalyst during Electrochemical CO2 Reduction [J].
Duanmu, Jing-Wen ;
Wu, Zhi-Zheng ;
Gao, Fei-Yue ;
Yang, Peng-Peng ;
Niu, Zhuang-Zhuang ;
Zhang, Yu-Cai ;
Chi, Li-Ping ;
Gao, Min-Rui .
PRECISION CHEMISTRY, 2024, 2 (04) :151-160