Eigenvalue Localization for Symmetric Positive Toeplitz Matrices

被引:1
作者
Pena, Juan M. [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada IUMA, Zaragoza 50009, Spain
关键词
Toeplitz matrices; symmetric matrices; eigenvalue localization; totally positive matrices; circulant matrices; ACCURATE COMPUTATIONS; TENSORS;
D O I
10.3390/axioms14040232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a real symmetric matrix, several inclusion and exclusion intervals containing its eigenvalues can be given. In this paper, for symmetric positive Toeplitz matrices, we provide an inclusion interval and, under an additional hypothesis, we also give two disjoint intervals contained in the previous one and containing all the eigenvalues. Examples are included, showing that these two intervals are necessary and that they can provide precise information on the localization of the eigenvalues. Sufficient conditions for positive definiteness are included. Necessary and sufficient conditions for the total positivity of symmetric positive Toeplitz matrices are presented. A characterization of symmetric totally positive circulant matrices is also obtained.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Are the Eigenvalues of Banded Symmetric Toeplitz Matrices Known in Almost Closed Form? [J].
Ekstroem, Sven-Erik ;
Garoni, Carlo ;
Serra-Capizzano, Stefano .
EXPERIMENTAL MATHEMATICS, 2018, 27 (04) :478-487
[22]   Double Bruhat cells and total positivity [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (02) :335-380
[23]   Total positivity: Tests and parametrizations [J].
Fomin, S ;
Zelevinsky, A .
MATHEMATICAL INTELLIGENCER, 2000, 22 (01) :23-33
[24]   TOTAL POSITIVITY AND THE EMBEDDING PROBLEM FOR MARKOV-CHAINS [J].
FRYDMAN, H ;
SINGER, B .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1979, 86 (SEP) :339-344
[25]  
Gantmacher F.P., 2002, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems
[26]  
Garoni C., 2017, Generalized Locally Toeplitz Sequences: Theory and Applications
[27]  
Gasca M, 1996, MATH APPL, V359, P109
[28]  
Goodman T. N. T., 1991, Computer-Aided Geometric Design, V8, P115, DOI 10.1016/0167-8396(91)90037-C
[29]  
Higham N.J., 2002, ACCURACY STABILITY N, DOI [DOI 10.1137/1.9780898718027, 10.1137/1.9780898718027]
[30]  
KARLIN, 1968, TOTAL POSITIVITY, V1