Eigenvalue Localization for Symmetric Positive Toeplitz Matrices

被引:1
作者
Pena, Juan M. [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada IUMA, Zaragoza 50009, Spain
关键词
Toeplitz matrices; symmetric matrices; eigenvalue localization; totally positive matrices; circulant matrices; ACCURATE COMPUTATIONS; TENSORS;
D O I
10.3390/axioms14040232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a real symmetric matrix, several inclusion and exclusion intervals containing its eigenvalues can be given. In this paper, for symmetric positive Toeplitz matrices, we provide an inclusion interval and, under an additional hypothesis, we also give two disjoint intervals contained in the previous one and containing all the eigenvalues. Examples are included, showing that these two intervals are necessary and that they can provide precise information on the localization of the eigenvalues. Sufficient conditions for positive definiteness are included. Necessary and sufficient conditions for the total positivity of symmetric positive Toeplitz matrices are presented. A characterization of symmetric totally positive circulant matrices is also obtained.
引用
收藏
页数:12
相关论文
共 50 条
[1]  
Aissen M., 1952, I. J. Anal. Math., V2, P93
[2]   TOTALLY POSITIVE MATRICES [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 :165-219
[3]  
[Anonymous], 2004, Gergorin and His Circles
[4]   FAST NON-HERMITIAN TOEPLITZ EIGENVALUE COMPUTATIONS, JOINING MATRIXLESS ALGORITHMS AND FDE APPROXIMATION MATRICES [J].
Bogoya, Manuel ;
Grudsky, Sergei M. ;
Serra-capizzano, Stefano .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (01) :284-305
[5]   On the condition numbers of large semi-definite Toeplitz matrices [J].
Bottcher, A ;
Grudsky, SM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 279 (1-3) :285-301
[6]   COMBINATORICS AND TOTAL POSITIVITY [J].
BRENTI, F .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 71 (02) :175-218
[7]  
Bttcher A., 2005, Spectral Properties of Banded Toeplitz Matrices
[8]   Extreme singular values and eigenvalues of non-Hermitian block Toeplitz matrices [J].
Capizzano, SS ;
Tilli, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 108 (1-2) :113-130
[9]  
Craven T., 1998, Linear and Multilinear Algebra, V45, P19, DOI DOI 10.1080/03081089808818575
[10]  
Cvetkovic L, 2004, ELECTRON T NUMER ANA, V18, P73