Gravity from entropy

被引:2
作者
Bianconi, Ginestra [1 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
EQUATION;
D O I
10.1103/PhysRevD.111.066001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gravity is derived from an entropic action coupling matter fields with geometry. The fundamental idea is to relate the metric of Lorentzian spacetime to a quantum operator, playing the role of an renormalizable effective density matrix and to describe the matter fields topologically, according to a Dirac-K & auml;hler formalism, as the direct sum of a 0-form, a 1-form and a 2-form. While the geometry of spacetime is defined by its metric, the matter fields can be used to define an alternative metric, the metric induced by the matter fields, which geometrically describes the interplay between spacetime and matter. The proposed entropic action is the quantum relative entropy between the metric of spacetime and the metric induced by the matter fields. The modified Einstein equations obtained from this action reduce to the Einstein equations with zero cosmological constant in the regime of low coupling. By introducing the G-field, which acts as a set of Lagrangian multipliers, the proposed entropic action reduces to a dressed Einstein-Hilbert action with an emergent small and positive cosmological constant only dependent on the G-field. The obtained equations of modified gravity remain second order in the metric and in the G-field. A canonical quantization of this field theory could bring new insights into quantum gravity while further research might clarify the role that the G-field could have for dark matter.
引用
收藏
页数:17
相关论文
共 54 条
[1]   Emergence of a 4D world from causal quantum gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW LETTERS, 2004, 93 (13) :131301-1
[2]  
Araki H., 1999, MATH THEORY QUANTUM
[3]  
Araki H., 1976, PUBL RIMS KYOTO U, V11, P809, DOI DOI 10.2977/PRIMS/1195191148
[4]   Black holes, gravitational waves and fundamental physics: a roadmap [J].
Barack, Leor ;
Cardoso, Vitor ;
Nissanke, Samaya ;
Sotiriou, Thomas P. ;
Askar, Abbas ;
Belczynski, Chris ;
Bertone, Gianfranco ;
Bon, Edi ;
Blas, Diego ;
Brito, Richard ;
Bulik, Tomasz ;
Burrage, Clare ;
Byrnes, Christian T. ;
Caprini, Chiara ;
Chernyakova, Masha ;
Chrusciel, Piotr ;
Colpi, Monica ;
Ferrari, Valeria ;
Gaggero, Daniele ;
Gair, Jonathan ;
Garcia-Bellido, Juan ;
Hassan, S. F. ;
Heisenberg, Lavinia ;
Hendry, Martin ;
Heng, Ik Siong ;
Herdeiro, Carlos ;
Hinderer, Tanja ;
Horesh, Assaf ;
Kavanagh, Bradley J. ;
Kocsis, Bence ;
Kramer, Michael ;
Le Tiec, Alexandre ;
Mingarelli, Chiara ;
Nardini, Germano ;
Nelemans, Gijs ;
Palenzuela, Carlos ;
Pani, Paolo ;
Perego, Albino ;
Porter, Edward K. ;
Rossi, Elena M. ;
Schmidt, Patricia ;
Sesana, Alberto ;
Sperhake, Ulrich ;
Stamerra, Antonio ;
Stein, Leo C. ;
Tamanini, Nicola ;
Tauris, Thomas M. ;
Arturo Urena-Lopez, L. ;
Vincent, Frederic ;
Volonteri, Marta .
CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (14)
[5]   Prospects for fundamental physics with LISA [J].
Barausse, Enrico ;
Berti, Emanuele ;
Hertog, Thomas ;
Hughes, Scott A. ;
Jetzer, Philippe ;
Pani, Paolo ;
Sotiriou, Thomas P. ;
Tamanini, Nicola ;
Witek, Helvi ;
Yagi, Kent ;
Yunes, Nicolas ;
Abdelsalhin, T. ;
Achucarro, A. ;
van Aelst, K. ;
Afshordi, N. ;
Akcay, S. ;
Annulli, L. ;
Arun, K. G. ;
Ayuso, I. ;
Baibhav, V. ;
Baker, T. ;
Bantilan, H. ;
Barreiro, T. ;
Barrera-Hinojosa, C. ;
Bartolo, N. ;
Baumann, D. ;
Belgacem, E. ;
Bellini, E. ;
Bellomo, N. ;
Ben-Dayan, I. ;
Bena, I. ;
Benkel, R. ;
Bergshoefs, E. ;
Bernard, L. ;
Bernuzzi, S. ;
Bertacca, D. ;
Besancon, M. ;
Beutler, F. ;
Beyer, F. ;
Bhagwat, S. ;
Bicak, J. ;
Biondini, S. ;
Bize, S. ;
Blas, D. ;
Boehmer, C. ;
Boller, K. ;
Bonga, B. ;
Bonvin, C. ;
Bosso, P. ;
Bozzola, G. .
GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (08)
[6]   Analogue Gravity [J].
Barcelo, Carlos ;
Liberati, Stefano ;
Visser, Matt .
LIVING REVIEWS IN RELATIVITY, 2011, 14
[7]   THE DIRAC-KAHLER EQUATION AND FERMIONS ON THE LATTICE [J].
BECHER, P ;
JOOS, H .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1982, 15 (04) :343-365
[8]   GENERALIZED SECOND LAW OF THERMODYNAMICS IN BLACK-HOLE PHYSICS [J].
BEKENSTE.JD .
PHYSICAL REVIEW D, 1974, 9 (12) :3292-3300
[9]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[10]  
Berenstein David, 2023, Physical Review D, DOI 10.1103/PhysRevD.108.074509