Introduction Diagnostic delays in tuberculosis (TB) threaten global control efforts, necessitating early detection of active TB (ATB). This study explores neutrophil extracellular traps (NETs) as key mediators of TB immunopathology to identify NETs-related biomarkers for differentiating ATB from latent TB infection (LTBI).Methods We analyzed transcriptomic datasets (GSE19491, GSE62525, GSE28623) using differential expression analysis (|log, FC| >= 0.585, adj. p < 0.05), immune cell profiling (CIBERSORT), and machine learning (SVM-RFE, LASSO, Random Forest). Regulatory networks and drug-target interactions were predicted using NetworkAnalyst, Tarbase, and DGIdb.Results We identified three hub genes (CD274, IRF1, HPSE) showing high diagnostic accuracy (AUC 0.865-0.98, sensitivity/specificity >80%) validated through ROC/precision-recall curves. IRF1 and HPSE correlated with neutrophil infiltration (r > 0.6, p < 0.001), suggesting roles in NETosis. FOXC1, GATA2, and hsa-miR-106a-5p emerged as core regulators, and 46 candidate drugs (e.g., PD-1 inhibitors, heparin) were prioritized for repurposing.Discussion CD274, IRF1, and HPSE represent promising NETs-derived diagnostic biomarkers for ATB. Their dual roles in neutrophil-mediated immunity highlight therapeutic potential, though drug predictions require preclinical validation. Future studies should leverage spatial omics and CRISPR screening to elucidate mechanistic pathways.