Intelligent Congestion Control in QUIC for Reliable E2E Communication Network: A Digital Twin-based Approach

被引:0
作者
Yang, Tongzhou [1 ]
Li, Qihao [1 ]
Hu, Fengye [1 ]
机构
[1] Jilin Univ, Coll Commun Engn, Changchun, Jilin, Peoples R China
来源
IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC WORKSHOPS 2024 | 2024年
基金
中国国家自然科学基金;
关键词
digital twin; congestion control; QUIC; end-to-end;
D O I
10.1109/ICCCWORKSHOPS62562.2024.10693770
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a digital twin-based intelligent congestion control approach to enhance the packet transmission adaptability and efficiency of the QUIC protocol within dynamic network environments. Specifically, by integrating actor-critic learning methods, the proposed approach adaptively tailors the pre-defined congestion control parameter settings to suit various application scenarios, thereby optimizing QUIC's performance under fluctuating network conditions. In addition, utilizing digital twin technology, the algorithm constructs a simulation model that mirrors the physical network within a digital framework. This model facilitates the rapid collection of network data, precise monitoring of congestion levels, and detailed analysis of historical transmission records and network state changes. These capabilities enable the predictive adjustment of model parameters and timely modifications to the congestion control strategy, ensuring optimal performance. Simulation results demonstrate that the proposed digital twin-based intelligent approach can enhance QUIC's transmission capabilities across diverse network conditions. Notably, it increases data throughput, reduces transmission delays, improves the convergence speed of the intelligence algorithm, and ensures reliable end-to-end transmissions within 5G networks.
引用
收藏
页码:282 / 287
页数:6
相关论文
共 19 条
[1]   T-RACKs: A Faster Recovery Mechanism for TCP in Data Center Networks [J].
Abdelmoniem, Ahmed M. ;
Bensaou, Brahim .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2021, 29 (03) :1074-1087
[2]  
Allman Mark., 2009, TCP CONGESTION CONTR, DOI [10.17487/RFC5681, DOI 10.17487/RFC5681]
[3]  
Brakmo L. S., 1994, Computer Communication Review, V24, P24, DOI 10.1145/190809.190317
[4]   BBR: Congestion-Based Congestion Control [J].
Cardwell, Neal ;
Cheng, Yuchung ;
Gunn, C. Stephen ;
Yeganeh, Soheil Hassas ;
Jacobson, Van .
COMMUNICATIONS OF THE ACM, 2017, 60 (02) :58-66
[5]   ShuttleBus: Dense Packet Assembling With QUIC Stream Multiplexing for Massive IoT [J].
He, Bo ;
Wang, Jingyu ;
Qi, Qi ;
Ye, Qiang ;
Li, Qihao ;
Liao, Jianxin ;
Shen, Xuemin .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (08) :8307-8322
[6]  
Iyengar J., 2021, RFC 9000
[7]  
Iyengar Jana, 2021, RFC 9002, DOI DOI 10.17487/RFC9002
[8]  
Jacobson V., 1988, Computer Communication Review, V18, P314, DOI 10.1145/52325.52356
[9]   On actor-critic algorithms [J].
Konda, VR ;
Tsitsiklis, JN .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1143-1166
[10]   The QUIC Transport Protocol: Design and Internet-Scale Deployment [J].
Langley, Adam ;
Riddoch, Alistair ;
Wilk, Alyssa ;
Vicente, Antonio ;
Krasic, Charles ;
Zhang, Dan ;
Yang, Fan ;
Kouranov, Fedor ;
Swett, Ian ;
Iyengar, Janardhan ;
Bailey, Jeff ;
Dorfman, Jeremy ;
Roskind, Jim ;
Kulik, Joanna ;
Westin, Patrik ;
Tenneti, Raman ;
Shade, Robbie ;
Hamilton, Ryan ;
Vasiliev, Victor ;
Chang, Wan-Teh ;
Shi, Zhongyi .
SIGCOMM '17: PROCEEDINGS OF THE 2017 CONFERENCE OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION, 2017, :183-196