Nonequilibrium Dynamics of Long-Range Interacting Fermions

被引:1
作者
Zwettler, T. [1 ,2 ]
Del Pace, G. [1 ,2 ]
Marijanovic, F. [3 ]
Chattopadhyay, S. [3 ,4 ]
Buehler, T. [1 ,2 ]
Halati, C. -m. [5 ]
Skolc, L. [3 ]
Tolle, L. [5 ,6 ]
Helson, V. [1 ,2 ]
Bolognini, G. [1 ,2 ]
Fabre, A. [1 ,2 ]
Uchino, S. [7 ]
Giamarchi, T. [5 ]
Demler, E. [3 ]
Brantut, J. P. [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne EPFL, Ctr Quantum Sci & Engn, CH-1015 Lausanne, Switzerland
[3] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[4] Harvard Univ, Dept Phys, Lyman Lab, Cambridge, MA 02138 USA
[5] Univ Geneva, Dept Quantum Matter Phys, Quai Ernest Ansermet 24, CH-1211 Geneva, Switzerland
[6] Univ Bonn, Phys Inst, Nussallee 12, D-53115 Bonn, Germany
[7] Waseda Univ, Fac Sci & Engn, Tokyo 1698555, Japan
基金
瑞士国家科学基金会;
关键词
QUANTUM PHASE-TRANSITION; SPONTANEOUS SYMMETRY-BREAKING; DENSITY; GAS; FERROMAGNETISM; FORMULATION;
D O I
10.1103/PhysRevX.15.021089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fundamental problem of out-of-equilibrium physics is the speed at which the order parameter grows upon crossing a phase transition. Here, we investigate the ordering dynamics in a Fermi gas undergoing a density-wave phase transition induced by quenching infinite-range, cavity-mediated interactions. We observe, in real time, the exponential rise of the order parameter and track its growth over several orders of magnitude. Remarkably, the growth rate can exceed the Fermi energy by an order of magnitude, consistent with predictions from a linearized instability analysis. This case contrasts with the ordering process driven by short-range interactions. We then generalize our results to linear interaction ramps, where deviations from the adiabatic behavior are captured by a simple dynamical ansatz. Our study offers a paradigmatic example of the interplay between strong short-and long-range interactions in quantum nonequilibrium dynamics.
引用
收藏
页数:13
相关论文
共 64 条
[1]   New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions [J].
Acevedo, O. L. ;
Quiroga, L. ;
Rodriguez, F. J. ;
Johnson, N. F. .
PHYSICAL REVIEW LETTERS, 2014, 112 (03)
[2]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[3]   Time-Resolved Observation of Competing Attractive and Repulsive Short-Range Correlations in Strongly Interacting Fermi Gases [J].
Amico, A. ;
Scazza, F. ;
Valtolina, G. ;
Tavares, P. E. S. ;
Ketterle, W. ;
Inguscio, M. ;
Roati, G. ;
Zaccanti, M. .
PHYSICAL REVIEW LETTERS, 2018, 121 (25)
[4]   Transverse Demagnetization Dynamics of a Unitary Fermi Gas [J].
Bardon, A. B. ;
Beattie, S. ;
Luciuk, C. ;
Cairncross, W. ;
Fine, D. ;
Cheng, N. S. ;
Edge, G. J. A. ;
Taylor, E. ;
Zhang, S. ;
Trotzky, S. ;
Thywissen, J. H. .
SCIENCE, 2014, 344 (6185) :722-724
[5]  
Baumann D, 2012, Arxiv, DOI arXiv:0907.5424
[6]   Exploring Symmetry Breaking at the Dicke Quantum Phase Transition [J].
Baumann, K. ;
Mottl, R. ;
Brennecke, F. ;
Esslinger, T. .
PHYSICAL REVIEW LETTERS, 2011, 107 (14)
[7]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[8]   Dicke Transition in Open Many-Body Systems Determined by Fluctuation Effects [J].
Bezvershenko, Alla, V ;
Halati, Catalin-Mihai ;
Sheikhan, Ameneh ;
Kollath, Corinna ;
Rosch, Achim .
PHYSICAL REVIEW LETTERS, 2021, 127 (17)
[9]   Dynamics of nonequilibrium Dicke models [J].
Bhaseen, M. J. ;
Mayoh, J. ;
Simons, B. D. ;
Keeling, J. .
PHYSICAL REVIEW A, 2012, 85 (01)
[10]   Direct production of fermionic superfluids in a cavity-enhanced optical dipole trap [J].
Buhler, Tabea N. C. ;
Zwettler, Timo ;
Bolognini, Gaia S. ;
Helson, Victor Y. ;
Del Pace, Giulia ;
Brantut, Jean-Philippe .
SCIPOST PHYSICS, 2025, 18 (04)