Robust Single-Cell RNA-Seq Analysis Using Hyperdimensional Computing: Enhanced Clustering and Classification Methods

被引:0
作者
Mohammadi, Hossein [1 ]
Baranpouyan, Maziyar [2 ]
Thirunarayan, Krishnaprasad [1 ]
Chen, Lingwei [1 ]
机构
[1] Wright State Univ, Dept Comp Sci & Engn, Dayton, OH 45435 USA
[2] Accenture Technol Labs, San Francisco, CA 94105 USA
关键词
single-cell RNA-seq; hyperdimensional computing; classification; clustering;
D O I
10.3390/ai6050094
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background. Single-cell RNA sequencing (scRNA-seq) has transformed genomics by enabling the study of cellular heterogeneity. However, its high dimensionality, noise, and sparsity pose significant challenges for data analysis. Methods. We investigate the use of Hyperdimensional Computing (HDC), a brain-inspired computational framework recognized for its noise robustness and hardware efficiency, to tackle the challenges in scRNA-seq data analysis. We apply HDC to both supervised classification and unsupervised clustering tasks. Results. Our experiments demonstrate that HDC consistently outperforms established methods such as XGBoost, Seurat reference mapping, and scANVI in terms of noise tolerance and scalability. HDC achieves superior accuracy in classification tasks and maintains robust clustering performance across varying noise levels. Conclusions. These results highlight HDC as a promising framework for accurate and efficient single-cell data analysis. Its potential extends to other high-dimensional biological datasets including proteomics, epigenomics, and transcriptomics, with implications for advancing bioinformatics and personalized medicine.
引用
收藏
页数:20
相关论文
共 42 条
[1]  
10x Genomics, 2018, 1k PBMCs from a Healthy Donor (v3 Chemistry)
[2]  
Aldridge P.L., 2020, Nat. Methods, V17, P875
[3]  
[Anonymous], 2019, 5k peripheral blood mononuclear cells (PBMCs) from a healthy donor (v3 chemistry), single cell gene expression dataset by Cell Ranger 3.0.2
[4]   Enhancing Rare Cell Type Identification in Single-Cell Data: An Innovative Gene Filtering Approach using Bipartite Cell-Gene Relation Graph [J].
Baranpouyan, Maziyar ;
Mohammadi, Hossein ;
Goudarzi, Hojjat Torabi ;
Thirunarayan, Krishnaprasad ;
Chen, Lingwei .
2023 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, BHI, 2023,
[5]   HDSCC: A robust clustering approach for Single Cell RNA-seq data using Hyperdimensional Encoding [J].
Baranpouyan, Maziyar ;
Mohammadi, Hossein .
2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
[6]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[7]   Normalization of single-cell RNA-seq counts by log(x+1) or log(1+x) [J].
Booeshaghi, A. Sina ;
Pachter, Lior .
BIOINFORMATICS, 2021, 37 (15) :2223-2224
[8]  
Burrello A., 2021, IEEE Trans. Neural Netw. Learn. Syst, V32, P4049
[9]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[10]   A molecular census of arcuate hypothalamus and median eminence cell types [J].
Campbell, John N. ;
Macosko, Evan Z. ;
Fenselau, Henning ;
Pers, Tune H. ;
Lyubetskaya, Anna ;
Tenen, Danielle ;
Goldman, Melissa ;
Verstegen, Anne M. J. ;
Resch, Jon M. ;
McCarroll, Steven A. ;
Rosen, Evan D. ;
Lowell, Bradford B. ;
Tsai, Linus T. .
NATURE NEUROSCIENCE, 2017, 20 (03) :484-496