BAYESIAN ESTIMATION OF DRIFT FRACTIONAL BROWNIAN MOTION AT DISCRETE OBSERVATIONS

被引:0
作者
Xia, Leixin [1 ]
Chen, Baojiang [1 ]
Lai, Dejian [1 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth, Dept Biostat & Data Sci, Houston, TX 77030 USA
关键词
Bayesian Method; Fractional Brownian Motion; MAP Estimator; Simulation Studies;
D O I
10.1142/S0218348X25500719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to estimate the three unknown parameters H, theta and sigma in drift fractional Brownian motion using the Bayesian method. The maximum a posteriori (MAP) estimator is chosen as the point estimator. We derived easy to use closed form for estimating theta and sigma. Our simulation results demonstrated that our method works well with a small sample size, missing, and irregular observations.
引用
收藏
页数:7
相关论文
共 11 条
[1]  
Beran J., 1994, STAT LONG MEMORY PRO, V61
[2]   Bayesian estimation of the Hurst parameter of fractional Brownian motion [J].
Chen, Chen-Yueh ;
Shafie, Khalil ;
Lin, Yen-Kuang .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) :4760-4766
[3]   Long-range dependence and performance in telecom networks [J].
Conti, PL ;
Lijoi, A ;
Ruggeri, F .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2004, 20 (04) :305-321
[4]  
Hu YZ, 2011, ACTA MATH SCI, V31, P1851
[5]   INTERIM ANALYSIS OF CLINICAL TRIALS: SIMULATION STUDIES OF CONDITIONAL POWER UNDER FRACTIONAL BROWNIAN MOTION [J].
Huang, Vivian J. ;
Lai, Dejian .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (08)
[6]   SEQUENTIAL MINIMAX SEARCH FOR A MAXIMUM [J].
KIEFER, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (03) :502-506
[7]   Estimating the Hurst effect and its application in monitoring clinical trials [J].
Lai, DJ .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (03) :549-562
[8]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[9]   THE HURST EFFECT - THE SCALE OF FLUCTUATION APPROACH [J].
MESA, OJ ;
POVEDA, G .
WATER RESOURCES RESEARCH, 1993, 29 (12) :3995-4002
[10]  
Peitgen H.-O., 1992, CHAOS FRACTALS NEW F