Complete weight enumerators of few-weight linear codes

被引:0
作者
Zeng, Xiangdi [1 ]
Meng, Xiangrui [2 ,3 ]
Gao, Jian [1 ]
Fu, Fang-Wei [2 ,3 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255000, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, Tianjin Key Lab Network & Data Secur Technol, LPMC, Tianjin 300071, Peoples R China
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2025年 / 17卷 / 04期
基金
中国国家自然科学基金;
关键词
Weil sums; Complete weight enumerators; Griesmer bound; Projective codes; Minimal codes; FINITE-FIELDS; CYCLIC CODES; CONSTRUCTION; 2-WEIGHT;
D O I
10.1007/s12095-025-00804-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Few-weight linear codes have important applications in the construction of strongly regular graphs, authentication codes and secret sharing schemes. In this paper, some few-weight linear codes are constructed from proper defining sets over finite fields. Their complete weight enumerators are explicitly determined using Weil sums. As applications, we give two classes of new projective three-weight linear codes, which achieve the Griesmer bound. We construct some new strongly regular graphs and infinite families of minimal three-weight linear codes with wminwmax <= p-1p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{w_{min}}{w_{max}}\le \frac{p-1}{p}$$\end{document}. Moreover, some new authentication codes are presented. Our results generalize and improve the work of Zhu and Liao (Finite Fields Appl. 75, 101897, 2021).
引用
收藏
页码:1013 / 1050
页数:38
相关论文
共 46 条
[1]   Minimal vectors in linear codes [J].
Ashikhmin, A ;
Barg, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) :2010-2017
[2]   Minimal Linear Codes in Odd Characteristic [J].
Bartoli, Daniele ;
Bonini, Matteo .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) :4152-4155
[3]   THE GEOMETRY OF 2-WEIGHT CODES [J].
CALDERBANK, R ;
KANTOR, WM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :97-122
[4]  
[陈辅灵 Chen Fuling], 2023, [电子学报, Acta Electronica Sinica], V51, P32
[5]  
Cohen Gerard D., 2013, Cryptography and Coding. 14th IMA International Conference, IMACC 2013. Proceedings: LNCS 8308, P85, DOI 10.1007/978-3-642-45239-0_6
[6]  
Coulter RS, 1998, ACTA ARITH, V83, P241
[7]  
Coulter RS, 1998, ACTA ARITH, V86, P217
[8]   A coding theory construction of new systematic authentication codes [J].
Ding, CS ;
Wang, XS .
THEORETICAL COMPUTER SCIENCE, 2005, 330 (01) :81-99
[9]   Cyclotomic linear codes of order 3 [J].
Ding, Cunsheng ;
Niederreiter, Harald .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (06) :2274-2277
[10]   A generic construction of Cartesian authentication codes [J].
Ding, Cunsheng ;
Helleseth, Tor ;
Klove, Torleiv ;
Wang, Xuesong .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (06) :2229-2235